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ABSTRACT
Temporal abstraction helps to reduce the sample complexity in
long-horizon planning in reinforcement learning (RL). One power-
ful approach is the options framework, where the agent interacts
with the environment using closed-loop policies, i.e., options, in-
stead of primitive actions. Recent works show that in the online
setting, where the agent can continuously explore the environ-
ment, lower PAC-like sample complexity or regret can be attained
by learning with options. However, these results are no longer
applicable in scenarios where collecting data in an online man-
ner is impossible, e.g., automated driving and healthcare. In this
paper, we provide the first analysis of the sample complexity for
offline RL with options, where a dataset is provided and no further
interaction with the environment is allowed. Two procedures of
the data collecting process are considered, which adapt to different
scenes of applications and are of great importance to study. Inspired
by previous works on offline RL, we propose PEssimistic Value
Iteration for Learning with Options (PEVIO) and derive subopti-
mality bounds for both datasets, which are near-optimal according
to a novel information-theoretic lower bound for offline RL with
options. Further, the suboptimality bound shows that learning with
options can be more sample-efficient than learning with primitive
actions in the offline setting.
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1 INTRODUCTION
Long-horizon planning is a great challenge in reinforcement learn-
ing (RL) [2, 5, 11]. Rather than learning with primitive actions,
exploiting the hierarchical structures in RL and planning with
temporally-extended action has long been explored [3, 4, 6, 13, 16,
17, 19]. One powerful and popular approach is the options frame-
work [21, 24]. In this framework, the agent is provided with a set
of options, i.e., closed-loop policies for taking action over a period
of time. Upon arriving at a state, the option used in the previous
timestep is terminated with a pre-specified probability, and (if ter-
minated) the agent selects a new option according to a hierarchical
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policy. She then takes primitive actions according to the chosen
option in the following steps until the option is replaced. Empirical
success [22, 23] shows that options help to accelerate learning and
achieve sample-efficient performance.

Recent works analyze the sample complexity of RL with options
in the online setting, where the agent continuously explores the
environment and learns a near-optimal policy. Brunskill and Li [1]
derive a PAC-like sample complexity of RL with options in the
semi-Markov decision processes (SMDPs). They show that the use
of options may reduce the sample complexity of a lifelong learning
agent. However, these results cannot be immediately translated into
a reduction of the sample complexity of learning with options in
Markov decision processes (MDPs) due to the fundamental difference
in the formulation between SMDPs and MDPs (see the discussion
of Sutton, Precup, and Singh [21, Section 0]). Fruit and Larzaric [7]
provide the first regret analysis of RL with options in MDPs. They
show that an SMDP-variant of the UCRL algorithm [12] attains a
sublinear regret. Nonetheless, the algorithm requires prior knowl-
edge of the environment, which is not usually available in practice.
This problem is addressed later by Fruit, Pirotta, Lazaric, and Brun-
skill [8]. They propose an algorithm that does not require prior
knowledge, yet achieving a near-optimal regret bound. While these
results report the regret bounds when options are used in learning
in an unknown environment, they are applicable only when dealing
with scenarios where online exploration is possible. However, in
many real-world applications, having to learn in an online manner
is undesirable. For examples, it has been argued that online learning
in healthcare [10] and automated driving [20] is risky and costly. In
such scenarios, offline learning, where a dataset is provided and the
agent is then asked to learn a near-optimal policy by only using the
dataset, is preferred. We note that there has been a rich literature on
regret bound analysis for offline RL with primitive actions only (i.e.,
without the use of options) [9, 15, 18]. Unfortunately, to the best of
our knowledge, there have been no results reported on the analysis
of regret bounds for offline RL under the options framework.

In this paper, we provide the first analysis of the sample com-
plexity of offline RL with options in episodic MDP. We consider two
procedures to collect the offline dataset. The first dataset D1 con-
tains state transitions and cumulative rewards by interacting with
the environment using options. The second dataset D2 contains
state transitions and (single-timestep) rewards by taking primitive
actions. The distinctive structure yields advantages in different
real-world applications. In short, D1 enables direct evaluation of
options and requires smaller storage, while D2 provides more in-
formation about the environment and allows the design of new
options. Hence, both datasets are of great importance to study.
Inspired by the PEVI algorithm [14], we propose the PEssimistic
Value Iteration for Learning with Options (PEVIO) algorithm. To
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analyze the suboptimality of the hierarchical policy output by PE-
VIO, we extend important results in previous works on RL with
primitive actions. Compared to offline RL with primitive actions,
our suboptimality bound enjoys a better dependence on the length
of each episode and the size of state space. This shows that the
options help to reduce the sample complexity and facilitate more
efficient learning not only in the online setting but also the offline
setting. To our best knowledge, this is the first study to provide
such theoretical guarantees for the options framework in offline
RL.

2 PRELIMINARIES
An episodic MDP with options is a sextupleM = (S,A,O, 𝐻,P, 𝑟 ),
where S is the state space,A the (primitive) action set, O the finite
set of options, 𝐻 the length of each episode, P = {𝑃ℎ : S × A →
Δ(S)}ℎ∈[𝐻 ] the transition kernel,1 𝑟 = {𝑟ℎ : S×A → [0, 1]}ℎ∈[𝐻 ]
the deterministic reward function.2 We define 𝑆 := |S|, 𝐴 := |A|,
and 𝑂 := |O|. A (Markov) option [21, 24] 𝑜 ∈ O is a pair (𝜋𝑜 , 𝛽𝑜 )
where 𝜋𝑜 = {𝜋𝑜

ℎ
: S → Δ(A)}ℎ∈[𝐻 ] is the option’s policy and

𝛽𝑜 = {𝛽𝑜
ℎ
: S → [0, 1]}ℎ∈[𝐻 ] is a probability of the option’s ter-

mination. Upon arriving at state 𝑠ℎ at timestep ℎ, if ℎ = 1 (at the
beginning of an episode), the agent selects option 𝑜1 ∼ 𝜇1 (·|𝑠1),
where 𝜇 = {𝜇ℎ : S → Δ(O)}ℎ∈[𝐻 ] is a hierarchical policy to
select option at each state. Otherwise (ℎ ≥ 2), the agent first ter-
minates option 𝑜ℎ−1 with probability 𝛽𝑜ℎ−1

ℎ
(𝑠ℎ). If option 𝑜ℎ−1 is

terminated, she then selects a new option 𝑜ℎ ∼ 𝜇ℎ (·|𝑠ℎ) according
to the hierarchical policy 𝜇. If option 𝑜ℎ−1 is not terminated, the
agent keeps using option 𝑜ℎ−1 at timestep ℎ, i.e., 𝑜ℎ = 𝑜ℎ−1. After
that, the agent takes action 𝑎ℎ ∼ 𝜋

𝑜ℎ
ℎ

(·|𝑠ℎ), receives a reward of
𝑟ℎ (𝑠ℎ, 𝑎ℎ), and transits to the next state 𝑠ℎ+1 ∼ 𝑃ℎ (·|𝑠ℎ, 𝑎ℎ). An
episode terminates at timestep 𝐻 + 1. The value function of hier-
archical policy 𝜇 is denoted by 𝑉 𝜇

ℎ
(𝑠) := E𝜇 [

∑𝐻
ℎ′=ℎ 𝑟ℎ′ |𝑠ℎ = 𝑠] for

any (ℎ, 𝑠) ∈ [𝐻 ] × S. There exists an optimal (and deterministic)
hierarchical policy 𝜇∗ = {𝜇∗

ℎ
: S → O}ℎ∈[𝐻 ] that attains the op-

timal value function, which is denoted by 𝑉 ∗ = {𝑉 ∗
ℎ
}ℎ∈[𝐻 ] . We

denote by 𝜃𝜇 = {𝜃𝜇
ℎ
: S × O → [0, 1]}ℎ∈[𝐻 ] the state-option occu-

pancy measure of the hierarchical policy 𝜇, where 𝜃𝜇
ℎ
(𝑠, 𝑜) is the

probability that the agent selects a particular option 𝑜 at state 𝑠 at
timestep ℎ. Further, we define 𝑍 𝜇O :=

∑
ℎ∈[𝐻 ]

∑
𝑠∈S

∑
𝑜∈O 𝜃

𝜇

ℎ
(𝑠, 𝑜)

and 𝑍 𝜇O :=
∑
ℎ∈[𝐻 ]

∑
𝑠∈S

∑
𝑜∈O I[𝜃

𝜇

ℎ
(𝑠, 𝑜) > 0] for any hierarchi-

cal policy 𝜇, where I[·] is the indicator function. Note that for a
deterministic hierarchical policy 𝜇 = {𝜇ℎ : S → O}ℎ∈[𝐻 ] , it holds
that 𝑍 𝜇O ≤ 𝐻 and 𝑍 𝜇O ≤ 𝐻𝑆 .

In the offline setting, a dataset collected by an experimenter
through interacting with the environment is provided, which con-
sists of trajectories of state transitions and rewards. We consider
two procedures to collect the dataset and the details are presented
in Section 3. Given any such dataset D, the algorithm is asked to
learn a near-optimal hierarchical policy. Let 𝜇̂ denote the hierar-
chical policy output from the algorithm. We aim to minimize its

1We use the notation Δ(X) to denote the probability simplex on space X throughout
the paper, i.e., each element in Δ(X) is a probability distribution on space X. For any
positive integer 𝑁 , we define [𝑁 ] = {1, · · · , 𝑁 }.
2While we assume deterministic rewards for simplicity, our results can be directly
generalized to stochastic rewards, as the major difficulty is in learning the transitions
rather than learning the rewards.

suboptimality at state 𝑠 , which is given by

SubOptD (𝜇̂, 𝑠) = 𝑉 ∗
1 (𝑠) −𝑉

𝜇̂

1 (𝑠)

3 MAIN RESULTS
3.1 Offline Learning with options Using Dataset

D1
We consider dataset D1 := {{(𝑠𝑘

ℎ
, 𝑜𝑘
ℎ
, 𝑢𝑘
ℎ
)}ℎ∈H𝑘 }𝑘∈[𝐾 ] collected by

the first procedure, where H𝑘 := {𝑡𝑘
𝑖
|1 = 𝑡𝑘1 < 𝑡𝑘2 < · · · < 𝑡𝑘

𝑗𝑘
≤

𝐻 } 𝑗
𝑘

𝑖=1 is a set of timesteps within the 𝑘th episode. Particularly, at
timestep 𝑡𝑘

𝑖
of the 𝑘th episode, the experimenter randomly selects

a new option 𝑜𝑘
𝑡𝑘
𝑖

according to the hierarchical behavior policy 𝜌 ,

uses it for (𝑡𝑘
𝑖+1 − 𝑡

𝑘
𝑖
) timesteps, collects a cumulative reward of

𝑢𝑘
𝑡𝑘
𝑖

within these (𝑡𝑘
𝑖+1 − 𝑡

𝑘
𝑖
) timesteps, and finally terminates this

option at state 𝑠𝑘
𝑡𝑘
𝑖+1

at timestep 𝑡𝑘
𝑖+1. Define the concentrability

𝐶
option
1 := max

(ℎ,𝑠,𝑜 ) ∈ [𝐻 ]×S×O

𝜃
𝜇∗

ℎ
(𝑠, 𝑜)

𝜃
𝜌

ℎ
(𝑠, 𝑜)

for dataset D1. We show that the PEVIO algorithm attains the
following suboptimality bound.

SubOptD1 (𝜇̂, 𝑠) ≤ 𝑂̃
©­­«
√︄
𝐶
option
1 𝐻3𝑍

𝜇∗

O 𝑍
𝜇∗

O
𝐾

ª®®¬
Compared to the suboptimality bound 𝑂̃ (

√︁
𝐻5𝑆𝐶∗/𝐾) attained by

the VI-LCB algorithm that learns with primitive actions [25, The-
orem 1], where 𝐶∗ is defined in [25, Assumption A], our subop-
timality bound is smaller w.r.t the horizon 𝐻 and state space 𝑆
when 𝑍 ∗

O ≪ 𝐻 and 𝑍 ∗
O ≪ 𝐻𝑆 . This shows that the options can

accelerate learning by temporal abstraction (i.e., 𝑍 ∗
O ≪ 𝐻 ) and the

reduction of the state space (i.e., 𝑍 ∗
O ≪ 𝐻𝑆), as pointed out by Fruit

and Lazaric [7]. While recent works [7, 8] testify this statement in
online RL, our results provide theoretical guarantee for offline RL.

3.2 Offline Learning with options Using Dataset
D2

We also consider dataset D2 := {(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
, 𝑟𝑘
ℎ
)}𝐾,𝐻
𝑘,ℎ=1 collected by the

second procedure. Particularly, the experimenter randomly takes
action 𝑎𝑘

ℎ
at state 𝑠𝑘

ℎ
at timestep ℎ of the 𝑘th episode according to

the behaviral policy 𝜌 , receives a reward of 𝑟𝑘
ℎ
, and transits to state

𝑠𝑘
ℎ+1. Define the concentrability

𝐶
option
2 := max

(ℎ,𝑠,𝑜 ) ∈ [𝐻 ]×S×O
max

(𝑠′,𝑎′ ) ∈S𝑚
ℎ,𝑠,𝑜

,ℎ≤𝑚≤𝐻

𝜃
𝜇∗

ℎ
(𝑠, 𝑜)

𝑑
𝜌
𝑚 (𝑠′, 𝑎′)

for datasetD2, where 𝑑
𝜌

ℎ
(𝑠, 𝑎) is the probability that the agent takes

action 𝑎 at state 𝑠 at timestep ℎ. We show that the PEVIO algorithm
attains the following suboptimality bound.

SubOptD2 (𝜇̂, 𝑠) ≤ 𝑂̃
©­­«
√︄
𝐶
option
2 𝐻4𝑆2𝐴𝑍

𝜇∗

O 𝑍
𝜇∗

O
𝐾

+
𝐻5𝑆5𝐴𝑂𝐶

option
2

𝐾

ª®®¬
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