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ABSTRACT
Inmulti-agent systems, it’s hard tomake proper decisions for agents
due to the partial observability of the environment. Among cate-
gories of multi-agent reinforcement learning (MARL) algorithms,
communication learning is a common approach to solving this
problem. However, existing work focus on individual-level commu-
nication which usually leads to significant communication costs.
Meanwhile, the group feature couldn’t be well captured at the
individual level. To tackle these problems, this paper proposes a
group-level information integration model called Double Channel
Communication Network (DC2Net). In DC2Net, individual and
group features are learned in two independent channels. Agents
no longer interact with each other at the individual level and all
information interaction is carried out in the group channel. This
model ensures effective learning of group features while reducing
individual-level communication costs. Empirically, we conducted
experiments on several environments and tasks. The experimental
results show that the DC2Net not only has a better performance
compared to other state-of-the-art MARL communication mod-
els but also reduces the costs of communication. Furthermore, it’s
a natural communication topology with the ability in balancing
individual and communication learning.
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1 INTRODUCTION
Multi-agent reinforcement learning (MARL) [1] communication
is a branch of MARL in which individual-level communication is
often used [2, 4, 6]. It means that there is communication between
every two agents or some pairs of them. The cost is unbearable
when there are a number of agents or a limited communication
bandwidth [8]. How to select appropriate partners to communicate
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with is another challenge that individual-level communication is
faced with [3, 7].

Considering the behavior of human cooperation to complete
complex tasks, it is a common strategy to reach a group consensus
based on personal knowledge [10]. Generally, forming a meaningful
group consensus can help individuals to make better decisions [15].
Several work have studied ways to raise group-level information
in MARL communication [7, 12, 13]. However, group information
is often seen as an aid to individual learning in these work. Due to
insufficient attention to group information, group learning and in-
dividual learning are often mixed [13], which makes the extraction
of group features more difficult. In our opinion, group information
is a key point in communication, it needs to be seen as a prominent
signal, and independent feature extraction is required at the group
level.

In this paper, we propose a communication model named Double
Channel Communication Network (DC2Net) which consults indi-
vidual and group learning in two independent channels. In DC2Net,
there are no information interactions between agents at the indi-
vidual level. Individual information is fed into a common channel
for group information integration. This approach avoids the prob-
lem of mixed learning while reducing the costs of individual-level
communication.

2 MODEL
2.1 Individual Channel
In our model, the individual channel is responsible for the inde-
pendent learning of individual information. For each agent, the
local observation 𝑜𝑖 is encoded into a hidden state ℎ𝑖 by an encoder.
After the encoding, several controllers are used to extract features
of ℎ = {ℎ1, ℎ2, ..., ℎ𝑛}. Here we use fully connected neural networks
as the controllers in the individual channel (FC-I):

ℎ𝑙+1𝑖 = 𝑓 𝑙𝐹𝐶−𝐼 (ℎ
𝑙
𝑖 ) (1)

where 𝑙 indicates the 𝑙th layer of the network. Inspired by the skip
connection in ResNet[5], we use skip connections to maintain and
reuse the individual information in different layers.

ℎ𝑙+2𝑖 = 𝑓 𝑙+1𝐹𝐶−𝐼 (ℎ
𝑙
𝑖 , 𝑓

𝑙
𝐹𝐶−𝐼 (ℎ

𝑙
𝑖 )) . (2)

2.2 Group Channel
The group channel is where individual information is integrated.
In our opinion, the order of the individuals should not affect the
output of the group channel. Here we use a group pooling operation
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to integrate the individual hidden states ℎ𝑖 . To show the mechanism
of the group pooling, we define a hidden state map𝐻 𝑙 which stacks
the hidden state ℎ𝑙

𝑖
of each agent 𝑖 in the 𝑙th layer.

𝐻 𝑙 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (ℎ𝑙𝑖 ), 𝑖 = 1, 2, ..., 𝑁 . (3)

More specifically,

𝐻 𝑙 =
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(4)

where ℎ𝑙
𝑖𝑑

indicates the 𝑑th dimension of hidden state ℎ𝑙
𝑖
. Here we

use the max pooling which is widely used in image processing
[9, 11] to obtain the maximum feature in each column of 𝐻 𝑙 :

ℎ̃𝑙 = {max
𝑖

ℎ𝑙
𝑖𝑑
|𝑑 = 1, 2, ..., 𝐷} (5)

where ℎ̃𝑙 is the group information gathered by the max pooling.
Since the group channel is learned independently under our

premise, wemake a gradient truncation ofℎ𝑙
𝑖
. There are no gradients

from individual learning in ℎ̃𝑙 so the update of parameters in the
group channel can be independent of the individual channel during
the backpropagation. Like the learning process of individuals, we
use several fully connected layers to extract features in the group
channel (FC-G). Except for the first layer, the input of each FC-
G consists of the pooled feature ℎ̃𝑙 and the output ℎ̃𝑙−1 from the
previous layer:

ℎ̃𝑙𝑖 = 𝑓 𝑙𝐹𝐶−𝐺 (ℎ̃𝑙−1𝑖 , 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝐻 𝑙 )). (6)

The output 𝑧 of the total group channel will be fed into a decoder
with the output ℎ𝐿

𝑖
of the individual channel. The decoder can be an

MLP that outputs the Q value, and we use the Q-learning algorithm
to train our model.

𝑞𝑖 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (ℎ𝐿𝑖 + 𝑧) (7)

3 EXPERIMENT
Traffic Junction Results We evaluate DC2Net on different levels
of Traffic Junction (TJ) [13] environment. The quantitative results
of success rates can be found in Table 1.

In the easy level TJ, all of the four models have similar perfor-
mance with success rates of more than 99%. This is because there
is only one grid of junction at the easy level. Agents just need to
learn to wait when there is a car at the intersection to complete the
task. In the medium level TJ, DC2Net reaches 97.39% in success rate.
In both easy and medium levels, the performance of CommNet is
poor compared to the other three models. We think this is because
instead of being effective, the group information generated by aver-
aging operations could affect individual learning. Since these two
tasks are not particularly difficult (only one junction), providing
too much information in the individual learning process will make
it more difficult to capture features. The comparable performance
of IQL also proves that excessive communication is not required in
these two environments. In the hard level TJ, DC2Net has absolute
superiority. DC2NET achieves a winning rate of 97.14% compared
with the other three methods reaching about 90%. The poor perfor-
mance of IQL shows that this task requires communication to speed

Table 1: Success rates on TJ.

Model Easy Medium Hard

IQL [14] 99.02% 97.02% 89.88%
CommNet [13] 99.22% 92.86% 85.43%

DGN [6] 99.14 % 97.22% 90.45%
DC2Net (this paper) 99.42% 97.39% 97.14%

up learning, and the other two communication methods can obtain
a faster convergence speed through communication. Nevertheless,
DC2Net achieves overall superiority.

Does the DC2NET Communicate Less? Empirically, we set
up a scenario on hard TJ with limited communication bandwidth
(A limited amount of bits per episode during execution. The model
can only make decisions based on individual information after the
limited communication bandwidth has been exhausted). The exper-
imental results of the three models in this scenario are shown in
Fig. 1 (the similarly colored curves are the performance of the same
model at full and limited bandwidths). It can be seen that DC2Net
maintains favorable performance under the condition of limited
bandwidth. However, the performance of the other two commu-
nication models has declined significantly under this condition.
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Figure 1: Experimental results on hard level TJ at fixed band-
width.

4 CONCLUSION
In this paper, we proposed the DC2Net for multi-agent commu-
nication by learning in two independent channels which are re-
sponsible for individual learning and communication learning. The
group-level communication not only effectively captures the group
feature but also reduces the costs of communication. Empirically,
the DC2Net model outperforms several state-of-the-art MARL com-
munication models on a variety of cooperative multi-agent tasks.
The experiment also illustrates that DC2Net can balance individual
learning and communication learning in different tasks.

For a broader impact, we demonstrate the effectiveness of inde-
pendent learning in both individual and group channels for multi-
agent communication. The group-level learning manner deserves
to be studied more widely.
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