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ABSTRACT
This work proposes a new technical foundation for demonstrating

Probably Approximately Correct (PAC) learning with multiagent

epistemic logics, using implicit learning to incorporate observations

into the background knowledge. We explore the sample complexity

and the circumstances in which the algorithm can be made efficient.
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1 INTRODUCTION
Many AI applications nowadays model environments with mul-

tiple agents, where each agent acts using their own knowledge

and beliefs to achieve goals either by coordinating with the other

agents or by challenging an opponent’s actions in a competitive

context. Reasoning not just about the agent’s world knowledge

but also about other agents’ mental state is referred to as epistemic
reasoning, for which a variety of modal logics have been devel-

oped [4]. While a number of sophisticated formal logics have been

proposed, they do not, to a large extent, address the problem of

knowledge acquisition. A very recent line of work initiated the idea

of an implicit knowledge base [7] constructed from observations,

via so-called PAC-Semantics [12]. Intuitively, in implicit learning,

we efficiently check entailment from all of the possible sentences

of the logic that could be observed to hold with high probability,

without explicitly representing each of these sentences. The im-

plicit approach avoids the construction of an explicit hypothesis but

still allows us to reason about queries against noisy observations.

This can be contrasted to the popular approaches of inductive logic
programming [11] and statistical relational learning [3, 5]. Since the

development of this technique, learning with the PAC-semantics

has been extended to certain fragments of first-order logic, e.g.,

[1]. Here, we continue this line of work and extend the problem

of implicit learnability to epistemic multi-agent logic. We provide

in fact, concrete results about sample complexity and correctness,
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as well as polynomial time guarantees under certain assumptions.

We leverage some recent results on the so-called Representation
Theorem explored for single-agent and multi-agent epistemic logics

which reduces epistemic reasoning to propositional logic. In addi-

tion, space-treelike resolution or bounded-width resolution can be

used to further achieve tractability for propositional logic.

2 PRELIMINARIES
Syntax Let L𝑛 be the propositional language with formulas from

the set of propositions 𝑃 . Let OL𝑛 be the epistemic language with

two additional modal operators. First,𝐾𝑖 :𝐾𝑖𝛼 is to be read as “agent 𝑖
knows𝛼”, where 𝑖 ranges from the finite set of agents𝐴𝑔 = {𝐴, ..., 𝐵}.
Second, 𝑂𝑖𝛼 is to be read as “all that agent i knows is 𝛼” to express

that a formula is all that is known. Borrowing from the dynamic

version of OL𝑛 [2], we introduce a dynamic operator [𝜌], such
that [𝜌]𝛼 is understood as formula 𝛼 is true after receiving the

information 𝜌 .

Semantics The semantics is provided in terms of possible worlds

and k-structures [2]. The 𝑘-structure uses sets of worlds at different
levels, the idea being that the number of levels (so-called 𝑖-depth)

corresponds to the number of alternating modalities in the formula.

A world𝑤 ∈ W is a function from the set 𝑃 to {0, 1}. We denote the

set of worlds byW and the set of 𝑘-structures for an agent𝐴 by 𝑒𝑘
𝐴
.

Therefore, with two agents {𝐴, 𝐵}, models are triples (𝑒𝑘
𝐴
, 𝑒

𝑗

𝐵
,𝑤),

where 𝑒𝑘
𝐴
is a k-structure for 𝐴, 𝑒

𝑗

𝐵
is a j-structure for 𝐵 and𝑤 is a

model. We write 𝑒𝑘 , 𝑒
𝑗

𝐵
,𝑤 ⊨ 𝛼 provided the alternating modalities

for𝐴 are ≤ 𝑘 , and the alternatingmodalities for𝐵 ≤ 𝑗 . The language
in general allows for arbitrary nestings of epistemic operators.

Sensing The observations received are represented via the ac-

tion modality [𝜌], where 𝜌 is an action standing for propositional

conjunction, interpreted, say, as reading from a sensor. We model

the sensors using the Sensing Theorem [2] and integrate them

into the knowledge base. The sensing theorem establishes that

[𝜌]𝐾𝐴𝛼 ≡ 𝑜 ∧ 𝐾𝐴 (𝑜 → [𝜌]𝛼), where 𝑜𝑏𝑠𝐴 (𝜌) = 𝑜 . By means of

the Regression Theorem, we note that [𝜌]𝛼 = 𝛼 because sensing

actions are assumed to not affect truth in the real world. This is the

essence of the Regression Theorem [2], where the application of

an observational action in the context of a propositional formula

yields the formula itself because sensing does not affect truth in

the real world.

3 REASONING
The reasoning problem is as follows: given an epistemic knowledge

base and a set of noisy partial observations received through the

sensors, we would like to decide the entailment of a given query

𝛼 with respect to the knowledge base and the implicitly learned
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hypothesis capturing the observations. In order to perform reason-

ing in the current setup, we are required to resolve two challenges:

first, how can observations be incorporated into the knowledge,

and second, how can the entailment of the query with respect to the

background knowledge as well as the hypothesis be evaluated? It

is important to appreciate that the second challenge deserves great

attention because we are dealing with noisy observations. Roughly

speaking, the way implicit learning works [7, 8] given a set of noisy

observations is that the conjunction of the background knowledge

together with each observation is used to check if the query formula

logically follows. Suppose this happens for a high proportion of

the observations. In that case, the query is accepted by the decision

procedure which can be seen as implicitly including whatever for-

mula might be captured by the high proportion of observations. So

checking logical validity is an important computational component

of the overall algorithm. The learning algorithm thus only runs in

polynomial time if checking validity is in polynomial time.

In our setting, by way of the only-knowing modality, the reduc-

tion to propositional reasoning is achieved using the Representation
Theorem denoted by the operator | | · | |, first introduced by [2, 9].

Putting it together, suppose that 𝜙,𝜓 are objective formulas and

𝛼 is an epistemic formula that does not mention {𝑂𝑖 , []} opera-
tors. Then 𝑂𝐴 (𝜙 ∧ 𝑂𝐵𝜓 ) ⊨ 𝐾𝐴𝛼 iff ⊨ | |𝛼 | |𝜙,𝜓 , where | |𝛼 | |𝜙,𝜓 is a

propositional formula.

PAC-Semantics PAC-Semantics [12] is a weaker semantics (com-

pared to classical entailment) for answering queries about back-

ground knowledge, where only a proportion of interpretations of

the background knowledge are required to satisfy the query.

In the context of learning, the knowledge is represented on one

hand by a collection of axioms about the world, and on the other,

by a set of examples drawn from an (unknown) distribution. In

this way, the algorithm uses both forms of knowledge to answer a

given query, which one may not be able to answer using only the

background knowledge or the standalone examples. We extend the

definition of validity as follows:

Definition 1. [(1 − 𝜖)-validity] Suppose we have a distribution
D supported on 𝐸𝑘

𝐴
×𝐸 𝑗

𝐵
×W and 𝛼 an epistemic formula 𝛼 ∈ OL𝑛 ,

that does not mention {𝑂𝑖 , []} operators. Then it follows that 𝛼

is (1 − 𝜖)-valid iff 𝑃𝑟 (𝑒𝑘
𝐴
,𝑒

𝑗

𝐵
,𝑤 ) ∈𝐸𝑘

𝐴
×𝐸 𝑗

𝐵
×W [(𝑒

𝑘
𝐴
, 𝑒

𝑗

𝐵
,𝑤) ⊨ 𝛼] ≥ 1 − 𝜖 ,

where (𝑒𝑘
𝐴
, 𝑒

𝑗

𝐵
,𝑤) is a model from 𝐸𝑘

𝐴
×𝐸 𝑗

𝐵
×W. If 𝜖 = 0, we say that

𝛼 is perfectly valid, which then corresponds to classical validity.

As mentioned above, the key trick is to develop a decision proce-

dure that checks the entailment of the query against the knowledge

base and the observations. The proportion of times the query for-

mula evaluates to true can be used as a reliable indicator of the

formula’s degree of validity, as guaranteed by Hoeffding’s inequal-

ity [6]. The agent will have some knowledge, and will also be able

to sense the world around them and receive readings describing

the current state of the world. These readings are neither fully

accessible nor are they exact. As a consequence, the observations

can be noisy or inconsistent with each other, but they are always

consistent with the knowledge base. Formally we have the notion of

amasking process that randomly reveals only a few properties of the

world [10]. These readings are conjunctions of propositional atoms

and are drawn independently at random from some probability dis-

tribution𝑀𝑀𝑀 over L𝑛 which is unknown to the agent. The masking

process induces a probability distribution𝑀𝑀𝑀 (D) over observations
𝜌 and this is aimed to model the root agent’s sensors, which has two

interpretations: the readings are absent due to a stochastic device

failure, or the agent is unable to concurrently detect every aspect

of the world. The reasoning problem of interest becomes deciding

whether a query formula 𝛼 is (1 − 𝜖)-valid.
Formally, knowledge about the distribution D comes from the

set of examples 𝜌 (𝑐 ) ∈ L𝑛 . Additional knowledge comes from a

collection of axioms, the knowledge base Σ. We assume here two

agents 𝐴 and 𝐵, but it can be generalized to multiple agents, from

which agent 𝐴 is the root agent. The background knowledge, for 𝐴

and 𝐵 respectively, is represented by Σ, Σ′ ∈ OL𝑛 . The input query

𝛼 is of the form 𝑀𝛼 ′, where 𝑀 denotes a sequence of bounded

modalities. And finally, we draw at least 𝑚 partial observations

which are propositional 𝜌 (1) , 𝜌 (2) , ..., 𝜌 (𝑚) .

Algorithm 1: DecidePAC Implicit learning reduction

Input: Σ set of sentences from root agent 𝐴; input query 𝛼 ;

partial observations: 𝜌 (1) , 𝜌 (2) , ..., 𝜌 (𝑚) ; parameters:

𝜖,𝛾, 𝛿 ∈ (0, 1).
Output: Accept if there exist formulas 𝐼 witnessed true

with probability at least (1 − 𝜖 + 𝛾) on𝑀𝑀𝑀 (D) such
that 𝑂𝐴 (Σ) ⊨ 𝐾𝐴 (𝐼 → 𝛼)
Reject if 𝑂𝐴Σ ⊨ 𝐾𝐴𝛼 is not (1 − 𝜖 − 𝛾)-valid

under the distribution D.

begin
𝑏 ← ⌊𝜖 ×𝑚⌋, 𝐹𝐴𝐼𝐿𝐸𝐷 ← 0.

foreach 𝑐 in𝑚 do
if 𝜌 (𝑐 ) ∧𝑂𝐴 (Σ) ⊭ 𝐾𝐴 (𝜌 (𝑐 ) → 𝛼) then

Increment 𝐹𝐴𝐼𝐿𝐸𝐷 . if 𝐹𝐴𝐼𝐿𝐸𝐷 > 𝑏 then
return Reject

return Accept

In implicit learning, the query 𝛼 is answered from observations

directly, without creating an explicit model. This is done bymeans of

entailment: we repeatedly ask whether𝑂𝐴 (Σ∧𝑂𝐵Σ
′) ⊨ [𝜌 (𝑐 ) ]𝐾𝐴𝛼

for examples 𝜌 (𝑐 ) ∈ 𝑀𝑀𝑀 (D) where 𝑐 ∈ {1, ...,𝑚}. So this entailment

checking with respect to each observation 𝜌 (𝑐 ) becomes our best

approximation to (1− 𝜖)-validity. If at least (1− 𝜖) of the examples

entail the query 𝛼 , the algorithm returns Accept. The estimation is

more accurate the more samples we use. The concepts of accuracy

and confidence are captured by the parameters 𝛾, 𝛿 ∈ (0, 1), where
𝛾 represents the accuracy of the examples used and 𝛿 captures the

confidence of the example received.

4 CONCLUSION
We have demonstrated new PAC-learning results with multi-agent

epistemic logic, by leveraging the Representation Theorem to re-

duce modal reasoning to propositional reasoning. The algorithm

is in principle applicable to any multi-agent logic, as long as a

sound and complete procedure is used to evaluate epistemic queries

against an epistemic knowledge base.
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