
Learning to Operate in Open Worlds by
Adapting Planning Models

Extended Abstract

Wiktor Piotrowski
Palo Alto Research Center

Palo Alto, USA
wiktorpi@parc.com

Roni Stern
Ben-Gurion University
Beersheeba, Israel
sternron@bgu.ac.il

Yoni Sher
Palo Alto Research Center

Palo Alto, USA
yoni.sher@parc.com

Jacob Le
Palo Alto Research Center

Palo Alto, USA
jale@parc.com

Matthew Klenk
Toyota Research Institute

Los Altos, USA
matt.klenk@tri.global

Johan deKleer
Palo Alto Research Center

Palo Alto, USA
dekleer@parc.com

Shiwali Mohan
Palo Alto Research Center

Palo Alto, USA
smohan@parc.com

ABSTRACT
Planning agents are ill-equipped to act in novel situations in which
their domain model no longer accurately represents the world. We
introduce an approach for such agents operating in open worlds
that detects the presence of novelties and effectively adapts their
domain models and consequent action selection. It uses observa-
tions of action execution and measures their divergence from what
is expected, according to the environment model, to infer existence
of a novelty. Then, it revises the model through a heuristics-guided
search over model changes. We report empirical evaluations on the
CartPole problem, a standard Reinforcement Learning (RL) bench-
mark. The results show that our approach can deal with a class of
novelties very quickly and in an interpretable fashion.

KEYWORDS
Open World Learning; Planning; Adaptive Agents; Model Repair
ACM Reference Format:
Wiktor Piotrowski, Roni Stern, Yoni Sher, Jacob Le, Matthew Klenk, Johan
deKleer, and Shiwali Mohan. 2023. Learning to Operate in Open Worlds by
Adapting Planning Models: Extended Abstract. In Proc. of the 22nd Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2023), London, United Kingdom, May 29 – June 2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION
Artificial intelligence and machine learning research on sequential
decision-making usually relies on the closed world assumption. That
is, all relevant characteristics of the environment are known ahead
of deployment, during agent design time. For a decision-making
agent that relies on automated planning techniques, knowledge
about environmental characteristics is encoded explicitly as a do-
main model (description of actions, events, processes) that govern
the agent’s beliefs about the environment’s dynamics. In an open

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Diagram of novelty reasoning. Solid lines denote the
planning process and dotted denote domain model revision.
world, however, the characteristics of the environment often change
while the agent is operational [3, 4]. Such changes — novelties — can
cause a planning agent to fail catastrophically as its knowledge of
the environment may become incomplete or incorrect. We explore
how planning agents can robustly handle such novelties in an open
world. Agents following our design use the planning domain model
to also evaluate if observed outcomes diverge fromwhat is expected
in the plans it generated. If the divergence is significant, the nov-
elty is inferred and accomodated through heuristics search. This
approach is applicable to planning agents implementing various
levels of PDDL. Results in this paper are from a system implemented
using PDDL+[2] for CartPole [1], a classic control problem.

2 APPROACH
Figure 1 shows the proposed agent design and the novelty reasoning
process. The agent interacts with its environment in a sequence of
episodes, where each episode is a set of actions taken by the agent
to reach a terminal state. At some episode novelty is introduced and
the environment changes, the agent is oblivious to the existence,
timing, and nature of the introduced novelty.

At an episode’s beginning, the agent accepts the current state
𝑠𝑡 and creates a corresponding planning problem (𝑠𝑡 ,𝐺) which is
then paired with the domain model 𝐷 . Then, it uses a planner to
solve the problem to obtain plan 𝜋 and attempts to execute in the

Poster Session II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2610

environment. During execution, it stores the observed trajectory 𝜏
as a list of ⟨𝑠𝑡 , 𝑎, 𝑠𝑡+1⟩. At the episode’s end, it computes an incon-
sistency score for the current model 𝐷 by comparing the expected
state trajectory with the observed execution trace, 𝜏 .

Formally, let 𝑆 (𝜏) be the sequence of states in observations and
𝑆 (𝜋, 𝐷) be the expected sequence of states obtained by simulating
the generated plan 𝜋 with the domain model 𝐷 . Let 𝑆 (𝑥) [𝑖] denote
the 𝑖𝑡ℎ state in the state sequence 𝑆 (𝑥). The inconsistency score
is computed as 𝐶 (𝜋, 𝐷, 𝜏) = ∑

𝑖 𝛾
𝑖 · | |𝑆 (𝜏) [𝑖] − 𝑆 (𝜋, 𝐷) [𝑖] | | where

0<𝛾<1 is a discount factor intended to limit the impact of sens-
ing noise. If the inconsistency score exceeds a set threshold 𝐶𝑡ℎ ,
the agent infers that its domain model 𝐷 has become inconsistent
with the novel environment characteristics. Then, it initiates the
search-based model repair process described in Alg. 1 to adjust 𝐷 ac-
cordingly. Alg. 1 searches for a domain repair𝛷 , a sequence of model
modifications that, when applied to the agent’s internal domain 𝐷 ,
returns a domain 𝐷′ that is consistent with observations. To find
such a repair, the algorithm accepts as input a set of basicModel Ma-
nipulation Operators (MMOs), denoted {𝜑}={𝜑0, 𝜑1, ..., 𝜑𝑛}. Each
MMO 𝜑𝑖∈{𝜑} represents a possible change to the domain. A do-
main repair 𝛷 is a sequence of one or more basic MMO 𝜑𝑖∈{𝜑}.
An MMO example is to add an amount Δ∈R to a numeric domain
fluent. After this repair, the agent uses the updated internal domain
model 𝐷′ to solve the subsequent tasks. It may take a few repair
steps to find a consistent domain model because a single trajectory
may not provide enough information to find the correct repair.

3 RESULTS
We evaluated our approach using a standard implementation of
CartPole [1], where the task is to balance the pole in the upright
position for 𝑛=200 steps by pushing the cart either left or right. The
environment reports the velocity and position of the cart and pole.
System dynamics are defined by several parameters: cart mass, pole
mass, pole length, gravity, pole angle and cart limits, push force.

Fig. 2 summarizes the performance of various agents. We studied
two novelties: changing pole length to 1.1 and gravity to 12; and

Algorithm 1: PDDL+ model repair algorithm.
Input : {𝜑 }: a set of basic MMOs; 𝐷 : the original PDDL+ domain; 𝜋 : plan generated

using 𝐷 ; 𝜏 : a trajectory;𝐶𝑡ℎ : consistency threshold
Output :𝛷𝑏𝑒𝑠𝑡 , a domain repair for 𝐷

1 OPEN← {∅};𝐶𝑏𝑒𝑠𝑡 ←∞; 𝜑𝑏𝑒𝑠𝑡 ← ∅
2 while𝐶𝑏𝑒𝑠𝑡 ≥ 𝐶𝑡ℎ do
3 𝛷 ← pop from OPEN
4 foreach 𝜑𝑖 ∈ {𝜑 } do
5 𝛷′ ←𝛷 ∪ 𝜑𝑖 ; /* Compose a domain repair */

6 DoRepair(𝛷′ , 𝐷)
7 𝐶𝛷′ ← InconsistencyEstimator(𝜋 , 𝐷 , 𝜏)
8 if 𝐶𝛷 ≤ 𝐶𝑏𝑒𝑠𝑡 then
9 𝐶𝑏𝑒𝑠𝑡 ← 𝐶𝛷′

10 𝛷𝑏𝑒𝑠𝑡 ←𝛷′

11 Insert𝛷′ to OPEN with key 𝑓 (𝛷′,𝐶𝛷′)
12 UndoRepair(𝛷′ , 𝐷)

changing pole length to 1.1 and cart mass to 0.9. As baselines, we im-
plemented RL agents that use dynamic q-networks with experience
replay[5]. DQN-static uses policy learned in non-novel settings in
the novel environment, DQN-dynamic learns a new policy.

Results show that the planning agents are, first, resilient; the im-
pact of novelty on their performance is not as drastic as on the DQN
agents. It is because planning agents use general models that are
modular and composable. In the novelty setting, a subset of model
elements are still relevant. Second, our approach, the planning-
adaptive agent learns quickly and recovers optimal performance in
≈20 episodes. This observation supports our central thesis: model-
space search enables quick adaptation in dynamic environments
because it can localize the learning to specific parts of the explicit
model and other parts are transferred. In contrast, a DQN agent has
to learn new network parameters afresh. Finally, the adaptations
are interpretable; they are expressed in the same language as the
original model, enabling a model designer to inspect what the sys-
tem has learned. Our method found the following example repairs
for CartPole. Each element in the repair is a numeric domain fluent
and the reported value is a change from its nominal value.
Repair 1: mass_cart:0,length_pole:0.3,mass_pole:0,
force_mag:0,gravity:0,angle_limit:0,x_limit:0
Repair 2: mass_cart:0,length_pole:0,mass_pole:0,force_mag:0,
gravity:1.0,angle_limit:0,x_limit:0

DQN

st
at
ic

ad
ap

ti
ve

planning

Figure 2: Graphs showing performance of DQN-static/adaptive and planning-static/repairing agents. Episodes are on the x-axis
and reward on the y-axis. The results are averaged over 5 trials. Red line indicates the episode 7 when novelty was introduced.

Poster Session II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2611

ACKNOWLEDGEMENTS
The work presented in this paper was supported in part by the DARPA SAIL-
ON program under award number HR001120C0040. The views, opinions
and/or findings expressed are those of the authors’ and should not be
interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government.

REFERENCES
[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, andWojciech Zaremba. 2016. OpenAI Gym. arXiv:arXiv:1606.01540

[2] Maria Fox and Derek Long. 2006. Modelling mixed discrete-continuous domains
for planning. JAIR 27 (2006), 235–297.

[3] Mayank Kejriwal, Abhinav Shrivastava, Eric Kildebeck, Bharat Bhargava, and
Carl Vondrick. 2022. Designing Artificial Intelligence for Open Worlds. (2022).
https://usc-isi-i2.github.io/AAAI2022SS/.

[4] Pat Langley. 2020. Open-World Learning for Radically Autonomous Agents. AAAI
(2020).

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

Poster Session II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2612

https://arxiv.org/abs/arXiv:1606.01540
https://usc-isi-i2.github.io/AAAI2022SS/

	Abstract
	1 Introduction
	2 Approach
	3 Results
	References

