
Accelerating Neural MCTS Algorithms using Neural Sub-Net
Structures
Extended Abstract

Prashank Kadam
Vesta Corporation

Portland, Oregon, United States
prashank.kadam@vesta.io

Ruiyang Xu
Northeastern University
Boston, United States
xu.r@northeastern.edu

Karl Lieberherr
Northeastern University
Boston, United States

k.lieberherr@northeastern.edu

ABSTRACT
Neural MCTS algorithms are a combination of Deep Neural Net-
works and Monte Carlo Tree Search (MCTS) and have successfully
trained Reinforcement Learning agents in a tabula-rasa way. These
algorithms have been able to find near-optimal strategies through
self-play for different problems. However, these algorithms have
significant drawbacks; they take a long time to converge, which
requires high computational power and electrical energy. It also
becomes difficult for researchers without cutting-edge hardware to
pursue Neural MCTS research. We propose Step-MCTS, a novel al-
gorithm that uses subnet structures, each of which simulates a tree
that provides a lookahead for exploration. A Step function is used
to switch between the subnet structures. We show how state-of-the-
art Neural MCTS algorithms can be extended to Step-MCTS and
evaluate their performances. Algorithms extended to Step-MCTS
show up to 2.1x decrease in the training times and achieve a faster
convergence rate compared to the other widely used algorithms in
the Neural MCTS domain.

KEYWORDS
Competitive MARL; Adaptive Learning; Growing Neural Networks

ACM Reference Format:
Prashank Kadam, Ruiyang Xu, and Karl Lieberherr. 2023. Accelerating Neu-
ral MCTS Algorithms using Neural Sub-Net Structures: Extended Abstract.
In Proc. of the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 – June
2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION
In recent years, there has been considerable progress in beating hu-
man benchmarks and achieving superhuman capabilities in games
like Chess, Go, Shogi, etc. The main reason for this breakthrough
is the accessibility of a larger amount of computational resources
and the development of machine learning in these domains. The
invention of algorithms like AlphaZero [11], and MuZero [10] has
led to computers beating humans in games like Go which was a
far-fetched idea some years ago. These algorithms are called Neural
Monte Carlo Tree Search (MCTS) algorithms, as they combine Deep
Neural Networks (DNNs) and MCTS [1], [5] to find near-optimal
strategies to play these games.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Although these algorithms perform exceptionally well on such
complex games, they have some significant drawbacks. These algo-
rithms take incredibly long periods to converge. They need state-
of-the-art graphics processors to run in parallel for training. There
have been attempts made to accelerate these algorithms in the past
[13], [4], [7], [9], [12], [6], [14], [3], but none of them have shown
a substantial improvement in training times.

In general, it has been observed that larger networks perform
better at state estimation, but training these networks is compu-
tationally very expensive. In contrast, smaller networks can be
trained much faster, but the evaluations are not very accurate.

As a part of this paper, we have developed Step MCTS. This
algorithm can be extended to other Neural MCTS algorithms to
converge much faster on the same hardware configuration in con-
siderably less training time. We achieve this by incrementally in-
creasing the size of the network (subnet) starting from the lowest
possible configuration (ex. one hidden layer). During an iteration
of training, we train the network based on the self-play trajectories
generated during the previous iteration. Then we roll out a tree
using the current network configuration. We keep track of all the
states visited during each of the self-plays and prioritize them. A
’switch’ action (adding an additional layer) is made when perfor-
mance dips, thus we transition to a new subnet. The new subnet will
now also consider the previously prioritized states while simulating
a tree.

We extend our Step-MCTS to one of the most widely used Neural
MCTS algorithms, AlphaZero, and evaluate our improvements over
the vanilla and advanced versions of this algorithm for games like
Connect-4, Othello, and Chess. Our experiments show that Step-
MCTS shows up to 2.1x improvements in the training times while
having a better rate of improvement during training compared
to vanilla versions of these algorithms and some of their special
configurations.

2 STEP MCTS
2.1 Subnet
In this section, we discuss the Step MCTS algorithm in detail. Let
us call our complete network 𝑓 , which has 𝑁 hidden layers. Note
that a complete network, in this case, means the upper bound to
the number of computational resources available. Thus, 𝑁 is the
highest number of hidden layers which we could add to the network
given computational hardware. In theory, 𝑁 could be as large as
possible, but we fix it to some finite value in practice. We define a
subnet as a configuration of 𝑓 that has an input layer, output layer,
and 𝑛 hidden layers such that 𝑛 ∈ [1, 𝑁 ]. Thus, a subnet with one

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2637



hidden layer would be the most basic configuration available to the
algorithm. Let’s call it 𝑓1. We start our training with 𝑓1 and keep on
increasing the number of hidden layers as required by the network
up to 𝑓𝑁−1 at which point we would have used up all our resources.

Each of these subnet configurations simulates its tree. Let us call
the tree simulated by 𝑓1 as𝑇1 and so on until𝑇(𝑁−1) . Starting from
𝑓1, we train in mini-batches, and after each iteration, the step func-
tion tells us whether wemove to 𝑓2. If the switch is made, 𝑓2 will help
roll out𝑇2, which will now use all the important states/observations
explored by 𝑇1, thus saving a considerable time on exploration.

When training the subnet, at the end of each training iteration,
the subnet is provided training examples of the form (𝑠𝑡 , 𝜋𝑡 , 𝑧𝑡 ). 𝜋𝑡
is an estimate of the policy from state 𝑠𝑡 , 𝑧𝑡 ∈ [−1, 1] is the final
outcome of the game from the perspective of the player at 𝑠𝑡 . All
the subnets are then trained to minimize the following loss function
(excluding regularisation terms):

𝑙 =
∑︁
𝑡

(𝑣\ (𝑠𝑡 ) − 𝑧𝑡 )2 − 𝜋𝑡 . log(𝑝\ (𝑠𝑡 ))

here 𝑝\ and 𝑣\ are the policy and values functions respectively.

2.2 Step Function (Threshold based)
The step function is applied after each training iteration to de-
cide whether to switch to the following subnet configuration. De-
pending on the requirement, the step function could have any
underlying configuration (Threshold based, MLP, RNN, etc.). Our
threshold-based step function outperformed the RNN-based one.
In a threshold-based step function, we set up a threshold value
_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 based on the ratio of the number of games won and
lost during a given iteration of training. Since the agent is pitted
against itself, if this ratio is lower, the policy is not showing notable
improvements.

2.3 Lookahead
Lookahead is a buffer that stores the count of the number of times
a state has been visited, the higher the count, the higher the prior-
ity. States are assigned priors in the value function based on the
priorities calculated in the lookahead buffer. Algorithm 1 gives a
detailed description of Step-MCTS.

3 EVALUATIONS
We evaluate our Step-MCTS algorithm for different games. To eval-
uate our new algorithm, we will be using the 6x6 Connect-4, 8x8
Othello, and Chess. We choose these games because they are suffi-
ciently complex to concretely show that our algorithm performs
much better than other Neural-MCTS configurations (AlphaZero

Algorithm 1 Step MCTS
𝑠 ← Initial State/Observation
𝑓𝑖 ← 𝑓1, 𝑇𝑖 ← 𝑇1
𝑚 ← Self-plays per iteration
for Each Iteration do

if 𝑆 (𝑛) ← Threshold based then
if _𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝑛(𝑧𝑤𝑜𝑛) then

𝑠𝑙𝑒𝑎𝑓 ← Select leaf from 𝑇𝑖 using lookahead
if No lookahead is available then

𝑠𝑙𝑒𝑎𝑓 ← Select unevaluated leaf from 𝑇𝑖
end if
(𝑝, 𝑣) ← 𝑓𝑖 (𝑠𝑙𝑒𝑎𝑓 )
Update (𝑇𝑖 , 𝑠𝑙𝑒𝑎𝑓 , (𝑝, 𝑣), 𝑝𝑘 )

else if _𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 > 𝑛(𝑧𝑤𝑜𝑛) then
𝑓𝑖 ← 𝑓𝑖+1, 𝑇𝑖 ← 𝑇𝑖+1
𝑠𝑙𝑒𝑎𝑓 ← Select leaf from 𝑇𝑖 using lookahead
if No lookahead is available then

𝑠𝑙𝑒𝑎𝑓 ← Select unevaluated leaf from 𝑇𝑖
end if
(𝑝, 𝑣) ← 𝑓𝑖 (𝑠𝑙𝑒𝑎𝑓 )
Update (𝑇𝑖 , 𝑠𝑙𝑒𝑎𝑓 , (𝑝, 𝑣), 𝑝𝑘 )

end if
end if

end for

[11], and MPV-MCTS [6]). Our evaluations are based on the Elo
score [2], Alpharank [8], and the training times. Table 1 shows the
details of the experiments and improvements over the AlphaZero
algorithm.

4 CONCLUSION
In this paper, we presented Step-MCTS, a novel algorithm that uses
subnet structures within the complete network to generate looka-
head that helps in faster training of Neural MCTS algorithms on
modest hardware. We extended our algorithm to one of the most
commonly used Neural MCTS algorithms, AlphaZero, and showed
that using Step-MCTS trains ∼2x faster on average over all the
games that we have evaluated. Note that along with the improve-
ments in training time, we also saw a faster rate of improvement in
the Elo and the AlphaRank scores compared to the Vanilla forms
of those algorithms. As a future scope of this research, we would
like the step function also to predict what kind of layer should be
added to the network after the switch event (convolutional, residual,
dropout, fully connected, etc.). For this paper, we only considered
convolutional layers.

Step MCTS (Threshold)
Game Iterations Self-

plays/Iter
Simulations Switching

Iterations
Total Time Improvement

over AZ
Elo
Score

AR
Score

Connect-4 60 100 25 [4,7,26] 38 hrs 1.89x 1462 0.987
Othello 60 100 50 [3,12,24] 77 hrs 1.92x 1848 0.994
Chess 300 100 50 [7,74,148] 236 hrs 2.06x 2482 0.991

Table 1: Step MCTS training metrics

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2638



REFERENCES
[1] Rémi Coulom. 2006. Efficient Selectivity and Backup Operators in Monte-Carlo

Tree Search, Vol. 4630. https://doi.org/10.1007/978-3-540-75538-8_7
[2] Arpad E Elo. 1978. The rating of chessplayers, past and present. (1978).
[3] Prashank Kadam, Ruiyang Xu, and Karl J. Lieberherr. 2021. Dual Monte Carlo

Tree Search. CoRR abs/2103.11517 (2021). arXiv:2103.11517 https://arxiv.org/
abs/2103.11517

[4] Julien Kloetzer. 2010. Monte-Carlo techniques : applications to the game of the
Amazons.

[5] Levente Kocsis and Csaba Szepesvári. 2006. Bandit Based Monte-Carlo Planning.
In Proceedings of the 17th European Conference on Machine Learning (Berlin,
Germany) (ECML’06). Springer-Verlag, Berlin, Heidelberg, 282–293. https://doi.
org/10.1007/11871842_29

[6] Li-Cheng Lan, Wei Li, Ting-Han Wei, and I-Chen Wu. 2019. Multiple Policy
Value Monte Carlo Tree Search. In IJCAI.

[7] Richard J. Lorentz. 2008. Amazons Discover Monte-Carlo. In Proceedings of the
6th International Conference on Computers and Games (Beijing, China) (CG ’08).
Springer-Verlag, Berlin, Heidelberg, 13–24. https://doi.org/10.1007/978-3-540-
87608-3_2

[8] Shayegan Omidshafiei, Christos Papadimitriou, Georgios Piliouras, Karl Tuyls,
Mark Rowland, Jean-Baptiste Lespiau, Wojciech M. Czarnecki, Marc Lanctot,
Julien Perolat, and Remi Munos. 2019. 𝛼-Rank: Multi-Agent Evaluation by

Evolution. Nature 1038 (Jul 2019).
[9] Raghuram Ramanujan and Bart Selman. 2011. Trade-Offs in Sampling-Based

Adversarial Planning.
[10] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,

Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, Timothy Lillicrap, and David Silver. 2019. Mastering Atari, Go,
Chess and Shogi by Planning with a Learned Model. http://arxiv.org/abs/1911.
08265 cite arxiv:1911.08265.

[11] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-
pel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. 2018. A general
reinforcement learning algorithm that masters chess, shogi, and Go through self-
play. Science 362, 6419 (2018), 1140–1144. https://doi.org/10.1126/science.aar6404
arXiv:https://www.science.org/doi/pdf/10.1126/science.aar6404

[12] Mark Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. 2008. Monte-Carlo
Tree Search Solver. 25–36. https://doi.org/10.1007/978-3-540-87608-3_3

[13] Mark Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. 2010. Monte Carlo Tree
Search in Lines of Action. IEEE Transactions on Computational Intelligence and
AI in Games 2 (12 2010), 239 – 250. https://doi.org/10.1109/TCIAIG.2010.2061050

[14] Ruiyang Xu, Prashank Kadam, and Karl Lieberherr. 2021. First-Order Problem
Solving through Neural MCTS based Reinforcement Learning. https://doi.org/
10.48550/ARXIV.2101.04167

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2639

https://doi.org/10.1007/978-3-540-75538-8_7
https://arxiv.org/abs/2103.11517
https://arxiv.org/abs/2103.11517
https://arxiv.org/abs/2103.11517
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-540-87608-3_2
https://doi.org/10.1007/978-3-540-87608-3_2
http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1911.08265
https://doi.org/10.1126/science.aar6404
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aar6404
https://doi.org/10.1007/978-3-540-87608-3_3
https://doi.org/10.1109/TCIAIG.2010.2061050
https://doi.org/10.48550/ARXIV.2101.04167
https://doi.org/10.48550/ARXIV.2101.04167

	Abstract
	1 Introduction
	2 Step MCTS
	2.1 Subnet
	2.2 Step Function (Threshold based)
	2.3 Lookahead

	3 Evaluations
	4 Conclusion
	References



