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ABSTRACT
We study the convergence of the actor-critic algorithm with nonlin-

ear function approximation under a nonconvex-nonconcave primal-

dual formulation. Stochastic gradient descent ascent is applied with

an adaptive proximal term for robust learning rates. We show the

first efficient convergence result with primal-dual actor-critic with

a convergence rate of O
(√︃

ln(𝑁𝑑𝐺2 )
𝑁

)
under Markovian sampling,

where 𝐺 is the element-wise maximum of the gradient, 𝑁 is the

number of iterations, and 𝑑 is the dimension of the gradient. Our

result is presented with only the Polyak-Łojasiewicz (PL) condition

for the dual variable, which is easy to verify and applicable to a

wide range of RL scenarios.
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1 INTRODUCTION
Actor-critic [1, 2, 13] is one of the most successful algorithms in re-

inforcement learning. The algorithm features an actor, which learns

the optimal policy that maximizes the long-term expected reward

through sequential interactions with the environment, and a critic,

which learns to approximate a value function that evaluates the

performance of a policy. Armed with recent developments in deep

learning, the actor-critic algorithm gains empirical success in a vari-

ety of real applications [9, 10, 12]. However, the underlying theory

and limits have yet to be fully understood. Most previous analy-

ses have their limitations. Castro and Meir [4], Maei [16] establish

asymptotic convergence in the original setting with an unknown

sample complexity. Follow-up works that investigate finite-sample

performance are conducted with two-timescale updates [7, 11, 19]

or linear function approximation [21, 22], where the best-known
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convergence rate is established to be O(𝜖−2/3). It is left open to the-

oretically justify the actor-critic method’s practical achievements

in theory in its general setting.

We study a single-timescale variant of the actor-critic algorithm
with nonlinear function approximation based on aminimax optimiza-

tion formulation that combines the objectives for actor and critic

[5]. With our formulation, a convergence rate of O
(√︃

ln(𝑁𝑑𝐺2 )
𝑁

)
under Markovian sampling and adaptive gradient is shown, where

𝑁 is the number of total iterations, 𝑑 is the dimension of the gra-

dient, and 𝐺 is the element-wise maximum value of the gradient.

This implies a sample complexity of
˜O(𝜖−2) with a constant batch

size that is independent of 𝑁 and 𝜖 . Our theorems are under Polyak-

Łojasiewicz (PL) condition with respect to the dual variable, which

is a much weaker assumption than the Minty Variational Inequality

(MVI) commonly seen in the nonconvex-nonconcave optimization

literature [14, 15].

2 PRELIMINARIES
We consider a discounted Markov decision process (MDP) denoted

by the tupleM = (S,A,P, 𝑅,𝛾), where S is the state space, A is

the action space, P : S × A → Δ(S) is the transition probability

kernel such that given a state-action pair (𝑠, 𝑎), it returns a proba-
bility distribution 𝑠′ ∼ P(· | 𝑠, 𝑎) of the next state, 𝑅 : S × A → R
is the reward function, and 𝛾 is the discount factor.

The goal of reinforcement learning is to learn a policy 𝜋 , which

takes 𝑠 ∈ S as an input and outputs a distribution 𝑎 ∼ 𝜋 (· | 𝑠)
over the action space A, to maximize the expected cumulative

discounted reward E𝑠0E𝜋
[∑∞

𝑡=0 𝛾
𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )

]
, where 𝑠0 ∼ `0 is a

given initial state distribution.

To evaluate the performance of the policy, the value function is

defined to measure the long-term expected cumulative discounted

reward as𝑉 (𝑠) = E
[∑∞

𝑡=0 𝛾
𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠

]
. Let𝑉 ∗

be the optimal

value function such that 𝑉 ∗ (𝑠) = max𝜋 E
[∑∞

𝑡=0 𝛾
𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠

]
.

The Bellman optimality equation states that

𝑉 ∗ (𝑠𝑡 ) = Γ𝑉 ∗ (𝑠𝑡 ) = max

𝑎∈A

{
𝑅(𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑡E𝑠𝑡+1 [𝑉 ∗ (𝑠𝑡+1)]

}
. (1)

Equation (1) can then be formulated into the following linear pro-

gram (LP) [3],

𝑉 ∗ = minimize

𝑉
(1 − 𝛾𝑡 )E𝑠𝑡 [𝑉 (𝑠𝑡 )]

subject to 𝑉 (𝑠𝑡 ) ≥ 𝑅(𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑡E𝑠𝑡+1 [𝑉 (𝑠𝑡+1)] .
(2)
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Without loss of generality, we assume that the linear program is

feasible, i.e., there exists an optimal policy for the given MDP.

When the strong duality holds, by [5], the equivalent saddle

point problem (3) can be jointly optimized to learn both the policy

and value functions. This approach of learning approximate policy

and value functions simultaneously is known as the actor-critic

method. The formulation is

min

𝑉
max

𝛼,𝜋
𝐿𝑘 (𝑉 , 𝛼, 𝜋) =min

𝑉
max

𝛼,𝜋
(1 − 𝛾𝑘+1)E` [𝑉 (𝑠𝑡 )]

+
∑︁

(𝑠𝑡 ,𝑎𝑡 )𝑘𝑡=0,𝑠𝑘+1

𝛼 (𝑠𝑡 )Z (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) , (3)

where 𝛼 : S → Δ(S), 𝜋 : S → Δ(A), Z (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) =
𝑘∏
𝑡=0

𝜋 (𝑎𝑡 |

𝑠𝑡 )𝑃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 )𝛿 ((𝑠𝑡 , 𝑎𝑡 )𝑘𝑡=0, 𝑠𝑘+1), and 𝛿 ((𝑠𝑡 , 𝑎𝑡 )
𝑘
𝑡=0

, 𝑠𝑘+1) =
𝑘∑
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑘+1𝑉 (𝑠𝑘+1) −𝑉 (𝑠𝑡 ).

Assume that 𝛼, 𝜋,𝑉 are parameterized by𝑢, \, 𝜔 , respectively. Let

∇𝑢𝐿𝑘 ,∇\𝐿𝑘 ,∇𝜔𝐿 denote the gradients of Equation (3) with respect

to each parameter. We design a variant of SGDA with adaptive gra-

dients, which dynamically incorporates the history of the gradients

to construct more informative updates. The algorithm is described

in Algorithm 1

Algorithm 1 Adaptive SGDA (ASGDA)

1: Input: Learning rates [𝜔 , [𝑧 = ([𝑢 , [\ ), batch size 𝑀 , 𝐻0 = 𝐼 ,

𝑧 = (𝑢, \ ),𝐺𝑧 = 𝐺 + b
(
𝐷 + 2𝐷

1−𝛾

)
2

· (𝐷2

𝑢 +𝐷2

\
),𝐺\ = 𝐺 + b (𝐷 +

2𝐷𝜔 )2
2: for 𝑘 = 1, . . . , 𝑁 do
3: Start from 𝑠 ∼ 𝛼𝑘 (𝑠) where 𝛼𝑘 is parametrized by 𝑢𝑘 , col-

lect samples 𝜏𝑘 = {𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1}𝑀𝑡=0 following policy 𝜋𝑘

parametrized by
ˆ\𝑘−1

4: 𝑔𝜔 (�̂�𝑘 , 𝑧𝑘 ) = ∇𝜔𝐿(�̂�𝑘 , 𝑢𝑘 ,
ˆ\𝑘 , 𝜏𝑘 ), 𝑔𝑧 (�̂�𝑘 , 𝑧𝑘 ) =

∇𝑧𝐿(�̂�𝑘 , 𝑢𝑘 ,
ˆ\𝑘 , 𝜏𝑘 )

5: �̂�𝑘 = 𝜔𝑘−1 − [𝜔

(
𝐼 +

√︃
�̂�−1
𝜔,𝑘−1

)
𝑔𝜔 (�̂�𝑘−1, 𝑧𝑘−1)

6: 𝜔𝑘 = 𝜔𝑘−1 − [𝜔

(
𝐼 +

√︃
�̂�−1
𝜔,𝑘

)
𝑔𝜔 (�̂�𝑘 , 𝑧𝑘 )

7: 𝑧𝑘 = 𝑧𝑘−1 + [𝑧
(
𝐼 +

√︃
�̂�−1
𝑧,𝑘−1

)
𝑔𝑧 (�̂�𝑘−1, 𝑧𝑘−1)

8: 𝑧𝑘 = 𝑧𝑘−1 + [𝑧
(
𝐼 +

√︃
�̂�−1
𝑧,𝑘

)
𝑔𝑧 (�̂�𝑘 , 𝑧𝑘 )

9: 𝑔𝜔,0:𝑘 = 1√
2�̂�𝜔

[𝑔𝜔,0:𝑘−1, 𝑔𝜔 (�̂�𝑘 , 𝑧𝑘 )]

10:
ˆℎ𝜔,𝑘,𝑖 = ∥𝑔𝜔,0:𝑘,𝑖 ∥2, 𝑖 = 1, . . . , 𝑑 , �̂�𝜔,𝑘 = Diag( ˆℎ𝜔,𝑘 ) + 1

2
𝐼

11: 𝑔𝑧,0:𝑘 = 1√
2�̂�𝑧

[𝑔𝑧,0:𝑘−1, 𝑔𝑧 (�̂�𝑘 , 𝑧𝑘 )]

12:
ˆℎ𝑧,𝑘,𝑖 = ∥𝑔𝑧,𝑘,𝑖 ∥2, 𝑖 = 1, . . . , 𝑑 , �̂�𝑧,𝑘 = Diag( ˆℎ𝑧,𝑘−1) + 1

2
𝐼

13: end for

3 CONVERGENCE ANALYSIS
Before we present the main theorem, we first discuss the assump-

tions necessary for the results. Most of the previous analyses on

nonconvex-nonconcave optimization problems utilize the MVI in-

equality assumption [6, 14, 15], which is unrealistic in real appli-

cations. Instead, we consider one-sided Polyak-Łojasiewicz (PL)

inequality for the dual variables only, which is relatively weaker

compared to MVI.

Assumption 3.1 (PL condition for dual variables). 𝐿(𝜔, 𝑧)
is assumed to satisfy Polyak-Łojasiewicz (PL) condition with respect
to 𝑧 such that ∀𝜔 ∈ R𝑑 and for some constant `, 1

2
∥∇𝑧𝐿(𝜔, 𝑧)∥2 ≥

` (𝐿(𝜔, 𝑓 ∗ (𝑧)) − 𝐿(𝜔, 𝑧)), holds for all 𝑧 = (𝑢, \ ) ∈ R𝑑 × R𝑑 .

Beyond the PL condition, we also assume that the gradients are

Lipschitz continuous and bounded. These assumptions are common

among the optimization literature [8, 17].

Assumption 3.2 (Lipschitz continuity and boundedness of

the gradient). There exists a constant𝐶 such that for all (𝜔, 𝑧), (𝜔 ′, 𝑧′)
∥∇𝐿(𝜔, 𝑧) − ∇𝐿(𝜔 ′, 𝑧′)∥ ≤ 𝐶 ∥(𝜔, 𝑧) − (𝜔 ′, 𝑧′)∥, where ∇𝐿(𝜔, 𝑧) =
(∇𝜔𝐿(𝜔, 𝑧),∇𝑧𝐿(𝜔, 𝑧)). There also exist constants 𝐷𝑢 , 𝐷\ , 𝐷𝜔 such
that for all (𝑢, \, 𝜔), ∥∇𝑢 log(𝛼𝑢 (𝑠))∥ ≤ 𝐷𝑢 , ∥∇\ log(𝜋\ (𝑎 |𝑠)∥ ≤
𝐷\ , ∥∇𝜔𝑉𝜔 (𝑠)∥ ≤ 𝐷𝜔 .

We also need the following assumption regarding the underlying

MDP, which is common for analyses under Markovian sampling

and can be satisfied by time-homogeneous Markov chains with

finite state space [18, 20].

Assumption 3.3 (Geometric convergence rate of MDP). The
MDP is irreducible and aperiodic for all 𝜋 , and there exist constants
b > 0 and 𝜌 ∈ (0, 1) such that for all𝜋 and 𝑡 ≥ 0, sup𝑠∈S ∥𝑃 (𝑠𝑡 , ·) − ^ (·)∥ ≤
b𝜌𝑡 , where ^ (·) is the stationary distribution of the Markov chain
induced by policy 𝜋 .

We further assume the rewards are bounded, to prevent the value

function to go unbounded.

Assumption 3.4 (Bounded reward). There exists a constant 𝐷
such that |𝑅(𝑠, 𝑎) | ≤ 𝐷,∀𝑠 ∈ S, 𝑎 ∈ A.

To measure the convergence of our algorithm, we consider the

first-order stationary point of the envelope function Φ(𝜔), Φ(𝜔) =
𝐿(𝜔, 𝑓 ∗ (𝜔)), where 𝑓 ∗ (𝜔) = argmax𝑧 𝐿(𝜔, 𝑧). As the strong duality
holds for our formulation and 𝜔 parametrized the value function,

the envelop function indirectly evaluates the convergence to the

local optimal value function.

Armed with the above assumptions, we give the following con-

vergence guarantee for Algorithm 1.

Theorem 3.1. Under appriopriate choices of [𝑧 , [𝜔 and Assump-
tion 3.1, 3.2, 3.3, 3.4, we have

∑𝑁
𝑘=2
E
[
∥∇𝜔Φ(𝜔𝑘 )∥2

]
= O

(
max{�̂�2

𝜔 ,�̂�
2

𝑧 } ln
(
𝑑𝑁𝐺2+ 1

𝑀

∑𝑀
𝑚=1 b𝜌

2𝑚
)

𝑁

)
, where 𝑁 is the number

of iterations and 𝐺𝜔 , 𝐺𝑧 are constants.

4 CONCLUSION AND FUTUREWORKS
We investigate the primal-dual formulation of the actor-criticmethod

in reinforcement learning. We presented the first finite-sample

analysis for single-scale algorithms and nonlinear function approx-

imation. Under Markovian sampling and adaptive gradients, we

establish a convergence rate of
˜O
(
𝜖−2

)
. This guarantee is under

PL conditions for only the dual variables.
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