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ABSTRACT
We study the problem of dynamically allocating 𝑇 indivisible items
to 𝑛 agents with the restriction that the allocation is fair all the time.
Due to the negative results to achieve fairness when allocations are
irrevocable, we allow adjustments to make fairness attainable with
the objective to minimize the number of adjustments. For restricted
additive or general identical valuations, we show that envy-freeness
up to one item (EF1) can be achieved with no adjustments. For
additive valuations, we give an EF1 algorithm that requires 𝑂 (𝑚𝑇 )
adjustments, improving the previous result of𝑂 (𝑛𝑚𝑇 ) adjustments,
where𝑚 is the maximum number of different valuations for items
among all agents.

We further impose the contiguity constraint on items such that
items are arranged on a line by the order they arrive and require
that each agent obtains a consecutive block of items. We present
extensive results to achieve either proportionality with an additive
approximate factor (PROPa) or EF1, where PROPa is a weaker fair-
ness notion than EF1. In particular, we show that for identical val-
uations, achieving PROPa requires Θ(𝑛𝑇 ) adjustments. Moreover,
we show that it is hopeless to make any significant improvement
for either PROPa or EF1 when valuations are nonidentical.

Our results exhibit a large discrepancy between the identical and
nonidentical cases in both contiguous and noncontiguous settings.
All our positive results are computationally efficient.
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1 INTRODUCTION
Fair division is one of the most fundamental and well-studied topics
in Computational Social Choice with much significance and several
applications in many real-life scenarios [15, 24]. Generally, there
are some resources and our objective is to divide them among a
group of competing agents in a fair manner. In our discussion, we
assume that the items to be allocated are goods, whose valuations
are nonnegative. Arguably, the most compelling fairness notion is
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envy-freeness, which is defined as each agent weakly preferring his
own bundle to any other agent’s bundle.

However, in the indivisible regime, the existence of envy-free
solutions is not guaranteed. For instance, if there are two agents but
only one item, the agent who receives the item is certainly envied
by the other one. One of the natural relaxations of envy-freeness is
envy-freeness up to one item (EF1) [11]. In an EF1 allocation, every
agent 𝑖 may envy another agent 𝑗 , but the envy could be eliminated
by removing one item from agent 𝑗 ’s bundle. EF1 allocations are
always guaranteed to exist and can be computed in polynomial
time even for general valuations [19].

Imposing some constraints to the model will make the fairness
objective less tractable. A series of works focus on the setting where
items lie on a line and each agent obtains a consecutive block of
items. For monotone valuations, Bilò et al. [8] present polynomial-
time algorithms to compute contiguous EF1 allocations for any
number of agents with identical valuations or at most three agents,
and prove the existence of contiguous EF1 allocations for four
agents. More recently, it is shown that contiguous EF1 allocations
for any number of agents always exist [18].

Another natural generalization assumes that items arrive online.
Furthermore, the types of future items are unknown and decisions
have to be made instantly. He et al. [16] investigate this model with
the requirement that the allocations returned after the arrival of
each item are EF1 and consider additive valuations. However, due
to the negative results against adversaries when allocations are
irrevocable [7], adjustments are necessary to achieve EF1 determin-
istically. Notably, the 𝑂 (𝑇 2) of adjustments is attained trivially by
redistributing all items in each round, where 𝑇 is the number of
items. He et al. [16] show that the Ω(𝑇 ) of adjustments is inevitable
for more than two agents, even if the information of all items is
known upfront. On the positive side, they give two algorithms
with respectively𝑂 (𝑇 1.5) and𝑂 (𝑛𝑚𝑇 ) adjustments, where 𝑛 is the
number of agents and𝑚 denotes the maximum number of distinct
valuations for items among all agents.

In this work, we adopt the model proposed by He et al. [16].
Furthermore, we also impose the contiguity constraint on items.
More precisely, items are arranged on a line by the order they arrive
and each agent obtains a contiguous block of items. Tomotivate this,
consider a library that has several bookshelves with books of the
same types being placed together. Moreover, the numbers of books
of two different types should not differ by a large amount. With
more and more bookshelves being deployed, the library needs to
reallocate a consecutive block of bookshelves to each certain type of
book and redistribute the books according to the new allocation. In
this case, the objective is to minimize the cost of moving the books
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Table 1: Results for the contiguous setting with additive val-
uations. The result for two agents in the identical case also
works for general valuations.

Identical Nonidentical

PROPa EF1 PROPa EF1

Lower Upper

𝑛 = 2 Θ(𝑇 ) Θ(𝑇 2)
𝑛 > 2 Θ(𝑛𝑇 ) Ω(𝑛𝑇 ) 𝑂

(
𝑅
𝐿
· 𝑛2𝑇

)
Ω(𝑇 2/𝑛) Θ(𝑇 2)

or equivalently, the number of adjustments. We study the number
of adjustments necessary to achieve some fairness guarantee in
both contiguous and noncontiguous settings. The complete proofs
of all results can be found in the full version of the paper [26].

2 OUR CONTRIBUTIONS
We first describe our positive results in the noncontiguous setting.
We show that if valuations are limited to be restricted additive1 or
general identical, EF1 can be achieved with no adjustments. In addi-
tion, we give an EF1 algorithm for additive valuations that requires
𝑂 (𝑚𝑇 ) adjustments, improving the previous result of 𝑂 (𝑛𝑚𝑇 ) ad-
justments. Note that if𝑚 is a constant, it matches the Ω(𝑇 ) lower
bound and thus is optimal.

With the contiguity constraint, EF1 is too stringent and we
start with a weaker fairness notion. It is known that contiguous
( 𝑛−1𝑛 · 𝑣max)-proportional (PROPa) allocations can be computed ef-
ficiently, where 𝑣max is the maximum valuation of items, and this
additive approximate factor is tight in some sense [25]. We first con-
sider identical valuations. We give a PROPa algorithm that requires
𝑂 (𝑛𝑇 ) adjustments and then establish the matching lower bound
to show that our algorithm is optimal. When it comes to EF1, for
two agents with general valuations, we show that EF1 is achievable
with 𝑂 (𝑇 ) adjustments, which is optimal. If the valuation of each
item is assumed to lie in [𝐿, 𝑅] such that 0 < 𝐿 ≤ 𝑅, we give an EF1
algorithm that requires 𝑂

(
(𝑅/𝐿) · 𝑛2𝑇

)
adjustments. By contrast,

in the nonidentical case, we show that it is hopeless to make any sig-
nificant improvement even for additive valuations. Specifically, we
give instances to establish the lower bounds of Ω(𝑇 2/𝑛) to achieve
PROPa and Ω(𝑇 2) for EF1. Our results in the contiguous setting
with additive valuations are summarized in Table 1.

Our results exhibit a large discrepancy between the identical
and nonidentical cases in both contiguous and noncontiguous set-
tings. In addition, all the algorithms given in this paper can be
implemented in polynomial time.

3 RELATEDWORK
Even though both divisible and indivisible models are extensively
studied, we only focus on the indivisible setting, which is more
relevant to our work.

1The valuations are restricted additive if they are additive and every item has an
inherent valuation with every agent being interested in only some items [1].

Dynamic fair division. Our work belongs to the vast literature of
dynamic or online fair division [4]. Under the assumption that val-
uations are normalized to [0, 1] and items are allocated irrevocably,
the maximum envy of �̃� (

√︁
𝑇 /𝑛) can be achieved deterministically

and this bound is tight asymptotically [7]. To bypass the negative
results, motivated by the notion of disruptions [12, 13], He et al.
[16] introduce adjustments to achieve EF1 deterministically.

Without the ability to adjust, another popular measure of com-
promise is assuming that agents’ valuations are stochastic. When
the valuation of each agent to each item is drawn i.i.d. from some
distribution, the algorithm of allocating each item to the agent with
the maximum valuation for it is envy-free with high probability
and ex-post Pareto optimal [20, 21]. Besides, Bai et al. [5] provide
the same guarantee for asymmetric agents, i.e., the valuation of an
item for each agent is independently drawn from an agent-specific
distribution. Furthermore, assuming that the valuations of different
agents for the same item are correlated, Pareto efficiency and fair-
ness are also compatible [27]. More recently, Benadè et al. [6] study
the partial-information setting where only the ordinal information
is revealed. Another series of works [2, 3] resort to random alloca-
tions to achieve ex-ante fairness together with some efficiency and
incentive guarantees.

Fair division of contiguous blocks. The online fair division model
with the contiguity requirement concerned in our work is a strict
extension of the fair division of contiguous blocks problem. In the
offline setting, the existence of contiguous EF1 allocations is inten-
sively studied [8, 18, 23] and the approximate versions of propor-
tionality, envy-freeness, and equitability are also considered [25].
More recently, Misra et al. [22] designs an algorithm to compute a
contiguous EQ1 allocation with the egalitarian welfare guarantee.
Besides, the price of fairness of contiguous allocations for goods
and chores are respectively established by Suksompong [25] and
Höhne et al. [17]. More generally, the connectivity relation among
items is allowed to form a graph that possesses some structures
with a path being a special case [9, 10].

4 CONCLUSION AND FUTUREWORK
We conclude with some directions for future work.

• Even though we have established almost tight upper and
lower bounds to achieve PROPa in the contiguous setting or
when 𝑛 = 2, there are still large gaps between the upper and
lower bounds to achieve EF1 in both continuous and non-
continuous settings. The first future direction is to tighten
these bounds.

• If the types of items are drawn from certain distributions
rather than chosen adversely, can we show a better upper
bound in expectation or asymptotically in both settings2?

• It would be interesting to investigate other fairness notions
like EQ1 [22].

• Another promising direction, like always asked in the offline
setting [14], is to achieve fairness and Pareto optimality
simultaneously. This has been shown in some other online
models [3, 27].

2Similar problems are presented in [25].
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