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ABSTRACT
In a district-based election, we apply a voting rule 𝑟 to decide the

winners in each district, and a candidate who wins in a maximum

number of districts is the winner of the election.We present efficient

sampling-based algorithms to predict the winner of such district-

based election systems in this paper. When 𝑟 is plurality (i.e., the

candidate receiving a maximum number of votes is declared as

the winner) and the margin of victory is known to be at least Y

fraction of the total population, we present an algorithm to predict

the winner with probability at least 1−𝛿 , whose sample complexity

is O
(
1

Y4
log

1

Y log
1

𝛿

)
. We complement this result by proving that

any algorithm, from a natural class of algorithms, for predicting the

winner in a district-based election when 𝑟 is plurality, must sample

at least Ω
(
1

Y4
log

1

𝛿

)
votes. We then extend this result to any voting

rule 𝑟 . Loosely speaking, we show that we can predict the winner

of a district-based election with an extra overhead of O
(
1

Y2
log

1

𝛿

)
over the sample complexity of predicting the single-district winner

under 𝑟 . We further extend our algorithm for the case when the

margin of victory is unknown, but we have only two candidates. We

then consider the median voting rule when the set of preferences

in each district is single-peaked. We show that the winner of such

a district-based election can be predicted with probability at least

1 − 𝛿 with O
(
1

Y4
log

1

Y log
1

𝛿

)
samples.
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1 INTRODUCTION
Voting and elections have always been the de facto method to ag-

gregate different preferences, eventually choosing one of many

candidate options. To predict the winner of an upcoming election,

a pollster typically samples some votes with the hope that the sam-

pled votes will help him/her correctly predict the winner. However,

sampling votes, depending on the sampling requirement and pro-

cedure, typically involves substantial cost. Hence, a natural goal of
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the pollster is to minimize the cost, which often translates to mini-

mizing the number of samples, without compromising the quality

(or success rate) of prediction. This same problem is also funda-

mental in many other applications like social surveys, post election

audits [11, 17, 19, 21, 22] etc. Intuitively speaking, this is the winner

prediction problem, which is the main focus of our paper.

Bhattacharyya and Dey resolved the sample-complexity of the

winner prediction problem for many popular voting rules, for ex-

ample, 𝑘-approval, Borda, approval, maximin, simplified Bucklin,

and plurality with run off [3]. We refer to the chapter by Zwicker

for an introduction to voting and some common voting rules [23].

In the plurality voting system, each voter votes for one of the can-

didates and the candidate who receives the maximum number of

votes is declared as the winner. We study the winner prediction

problem for district-based elections in this paper. In a district-based

election, the voters are partitioned into a set of districts. Then some

particular voting rule 𝑟 is used to decide the winner in each district

and the candidate winning in the most number of districts wins

the election. Indeed, many large-scale elections, for example, In-

dian general election, US Presidential election, etc., are real-world

examples of district-based elections. Since the algorithms in [3]

are specific to single-district elections only, they are not applicable

in district-based elections. On the other hand, predicting winners

in large scale district-based political elections has become norm

nowadays. In this work, we fill up this research gap by developing

non-trivial algorithms for predicting the winner in district-based

elections.

An election is defined by a tuple (V, C, 𝑟 ), whereV is a set of

𝑁 voters, C a set of𝑚 candidates and 𝑟 is the voting rule (i.e., a

function that selects a winner based on the votes of the voters).

In a district-based election, the set V of voters is partitioned into

𝑘 districts, say (V1, . . . ,V𝑘 ) for some 𝑘 ; eachV𝑖 , 𝑖 ∈ [𝑘], is called
a district. The overall winner is the candidate who wins in the

maximum number of districts. The Margin Of Victory (MOV) of an

election is defined as the minimum number of votes to be altered

to change the winner of the election.

In our sampling model, we are allowed to sample a district from

the set of districts uniformly at random. We are also allowed to

sample a voter along with her vote uniformly at random from her

district. Finally, we are allowed to perform sampling with replace-

ment, that is, the underlying probability space does not change

after drawing a sample.

2 OUR CONTRIBUTION
The primary focus of our paper is the (Y, 𝛿)−Winner-Prediction

problem, which is defined as follows.

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2661



Definition 1 ((Y, 𝛿)−Winner-Prediction). Given an electionwith
𝑁 voters partitioned into 𝑘 districts, and whose margin of victory

is at least Y𝑁 , compute the winner of the election with probability

at least 1 − 𝛿 .

Previous work studied the above problem in the setting of 𝑘 = 1

and an algorithm with optimal sample complexity of Θ
(
1

Y2
log

1

𝛿

)
is known [3]. Our first result is the following.

Theorem 1. There is an algorithm for (Y, 𝛿)−Winner-Prediction

with sample complexity O
(
1

Y4
log

1

Y log
1

𝛿

)
when the plurality voting

rule is used to select the winner in each district.

Our algorithm is fairly simple to state: sample O
(
1

Y2
log

1

𝛿

)
dis-

tricts and from each of these sampled districts, sample O
(
1

Y2
log

1

Y

)
votes and compute their winners using the plurality rule. Finally,

output the candidate that wins in maximum number of sampled

districts.

We next show that the sample complexity of our algorithm is

essentially optimal among a natural class of algorithms.

Theorem 2. Any algorithm for (Y, 𝛿)−Winner-Prediction that
works by first sampling 𝑙1 districts uniformly at random with re-
placement and then sampling 𝑙2 votes uniformly at random with
replacement from each of the sampled districts, must satisfy 𝑙1 =

Ω
(
1

Y2
log

1

𝛿

)
and 𝑙2 = Ω

(
1

Y2

)
even when there are only 2 candidates

and all the districts have equal population.

The above result is principally based on the fact that Ω
(
1

Y2
log

1

𝛿

)
tosses are necessary to distinguish between two coins whose proba-

bilities of landing up in heads are
1

2
+ Y and 1

2
− Y respectively, with

at least 1 − 𝛿 probability [1, 5].

We next generalize our result to any arbitrary voting rule 𝑟 in

each district. Let 𝜒𝑟 (𝑚, Y, 𝛿) be the number of samples required so

that the predicted winner of a single-district election using rule 𝑟

with 𝑛 voters and𝑚 candidates, can be made winner by changing at

most Y𝑛 votes. Then, using the prediction algorithm for 𝑟 , we design

an algorithm for (Y, 𝛿)−Winner-Prediction for 𝑟 with sample

complexity O
(
1

Y2
log

1

𝛿
· 𝜒𝑟 (𝑚, Y, Y)

)
.

In (Y, 𝛿)−Winner-Prediction, we assume that we know some

lower bound on the margin of victory of the election. To cater to

situations where this information might not be available, we define

and study the 𝛿−Winner-Prediction problem.

Definition 2 (𝛿−Winner-Prediction). Given an election with

𝑁 voters partitioned into 𝑘 districts, compute the winner of the

election with probability at least 1 − 𝛿 .

We design algorithms whose sample complexities are a function

of the true (unknown) margin of victory of the election.

Theorem 3. When the plurality rule is used to decide the winners in
each district, there is an algorithm for 𝛿−Winner-Prediction with

sample complexity O
(
1

Y6
log

2 1

Y𝛿

)
when we have only 2 candidates,

where Y𝑁 is the actual (unknown) margin of victory of the election.

The above algorithm builds on the observation that there must

exist at least Ω(Y2𝑘) districts in which at least
1

2
+ Ω(Y) fraction of

voters must have voted for the true winner. Roughly, our algorithm

iterates until it reaches a value Ỹ that satisfies the above property,

whereupon it outputs the candidate winning in the majority of

(sampled) districts.

Quite often in real-life scenarios the voters are grouped into

districts in such a way that each district has roughly the same

population. Under this assumption, we are able to improve the

sample complexity to �̃�
(
1/Y4

)
.

Theorem 4. There is an algorithm for 𝛿−Winner-Prediction with

sample complexity O
(
1

Y4
log

2 1

Y𝛿

)
, where Y𝑁 is the true (unknown)

margin of victory, when we have only 2 candidates and the number
of voters in each district is at most a constant times the average
population of a district.

We next turn our attention towards the median rule. Here there

exists an ordering (called the harmonious ordering) over the set of
candidates and the median with respect to the ordering is declared

as the winner of the election. If the harmonious ordering in a district

is unknown, we assume that the preference profile of each voter in

that district is single-peaked. We show the following result.

Theorem 5. There exists an algorithm with sample complexity

O
(
1

Y4
log

1

Y log
1

𝛿

)
for (Y, 𝛿)−Winner-Predictionwhen the median

rule is used to determine the winner of each district.

3 RELATEDWORK
Themost immediate predecessor of our (Y, 𝛿)−Winner-Prediction

problem is the work of Bhattacharyya and Dey who worked on

the same problem but focused only on single district elections [3].

Another classical problem is the winner determination problem in

computational social choice. Bartholdi et al. observed that there are

popular voting rules, namely the Kemeny voting rule, for which,

determining the winner is NP-hard [2]. Hemaspaandra et al. later

showed that the above problem is complete for the complexity

class PNP| | [14]. Similar results also hold for the Dodgson and Young

voting rules [4, 12, 13, 20].

Our problem is also closely related to the general question: do

we need to see all the votes to determine the winner? Conitzer and

Sandholm developed preference elicitation policies as a sequence

of questions posed to the voters [7]. They showed that finding

an effective elicitation policy is NP-hard even for some common

voting rules. On the positive side, many effective elicitation policies

have been subsequently developed for many important restricted

domains and settings [6, 8–10, 15, 16, 18].

4 CONCLUSION
We have initiated the study of the sample complexity for predicting

the winner in a district-based election and shown some preliminary

results for the problem for some voting rules. Most importantly,

we have shown that the sample size remains independent of the

number of districts. However, some of our algorithms work only

for the case of two candidates and/or when the districts have nearly

identical populations. Another research direction is to obtain theo-

retical guarantees of the algorithm which samples districts without

replacement.
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