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ABSTRACT
Spatial models of preference, in the form of vector embeddings,
are learned by many deep learning and multiagent systems, in-
cluding recommender systems. Often these models are assumed
to approximate a Euclidean structure, where an individual prefers
alternatives positioned closer to their “ideal point”, as measured
by the Euclidean metric. However, Bogomolnaia and Laslier [3]
showed that there exist ordinal preference profiles that cannot
be represented with this structure if the Euclidean space has two
fewer dimensions than there are individuals or alternatives. We
extend this result, showing that there are realistic situations in
which almost all preference profiles cannot be represented with
the Euclidean model, and derive a theoretical lower bound on the
expected error when using the Euclidean model to approximate
non-Euclidean preference profiles. Our results have implications for
the interpretation and use of vector embeddings, because in some
cases close approximation of arbitrary, true ordinal relationships
can be expected only if the dimensionality of the embeddings is a
substantial fraction of the number of entities represented.
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1 INTRODUCTION
Spatial models of preference, in the form of vector embeddings, are
widely used in deep learning systems. In user-facing contexts such
as recommender systems, user embeddings contain information
about literal preferences [15], but embeddings used to capture de-
grees of similarity between elements of a set can also be viewed as
preference models. For example, each word in a language could be
considered to have a “preference” over all other words, “preferring”
those with similar meanings. Spaces of word embeddings [1] can
thus be viewed abstractly as models of preference.

A canonical spatial model is the Euclidean model, where both
individuals and alternatives are represented as points in Euclidean
space, and each individual prefers nearer alternatives, as measured
by the standard Euclidean metric [3]. A preference profile of 𝐼 in-
dividuals over 𝐴 alternatives is said to be 𝑑-Euclidean if it can be
represented with a 𝑑-dimensional Euclidean model. The Euclidean
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model is often used explicitly, and even spatial preference mod-
els that are not strictly Euclidean are often assumed to have an
approximately Euclidean structure, such as when embeddings are
compared using cosine similarity [12, Ch. 6.4], which induces the
same ordinal relationships as the Euclidean metric when applied to
normalized vectors. Given the prevalence of Euclidean preference
models, it is important to understand their limitations.

In this paper, we assume a “ground truth” preference structure
where each individual’s preference is a strict order over the avail-
able alternatives. Consider the expressiveness of the Euclidean
preference model relative to this ordinal model. There are three
questions one might ask. For fixed positive integers 𝐼 , 𝐴 and 𝑑 :

1. Are there any preference profiles of 𝐼 individuals over 𝐴
alternatives that are not 𝑑-Euclidean?

2. What proportion of such profiles are not 𝑑-Euclidean?
3. How large is the expected error when approximating arbi-

trary preferences with a 𝑑-dimensional Euclidean model?
Prior work answers question 1 [3]. We address questions 2 and 3.
A preprint of our complete paper is available online [18].

Related Work. Important context is provided by Peters [16] who
showed that the problem of determining whether a preference
profile is 𝑑-Euclidean is, in general, NP-hard, and that some ordinal
profiles require exponentially many bits to be represented in the
Euclidean model. Because of these hardness results, it is usually not
feasible to check whether a given ordinal profile is 𝑑-Euclidean, or
to compute its best approximation with a 𝑑-dimensional Euclidean
model (a task known as multidimensional unfolding [2, 6, 14]).

A related line of work discusses the limitations of the Euclidean
preference model from the perspective of measurement theory
and psychometric validity [4, 5, 10, 11, 17]. A general review of
structured preference models is given by Elkind et al. [7].

Notation. The preference of individual 𝑖 is denoted 𝜋𝑖 (a ranked
list) or >𝑖 (the corresponding order relation). The list of all prefer-
ences in a population of 𝐼 individuals is called a profile. For given
values of 𝐴 and 𝐼 , the set of all possible profiles is denoted P𝐴,𝐼 .
The number of unique preferences in a profile is denoted 𝐼∗.

2 THREE QUESTIONS
2.1 Are All Profiles Euclidean?
Bogomolnaia and Laslier [3] previously identified the minimum
dimensionality required to represent all profiles of a given size.

Theorem 1 (Bogomolnaia and Laslier 2007). All profiles Π ∈ P𝐴,𝐼
are Euclidean of dimension 𝑑 if and only if 𝑑 ≥ 𝑀 where either
𝑀 = min{𝐼 − 1, 𝐴 − 1} or𝑀 = min{𝐼 , 𝐴 − 1}, depending on 𝐴 and 𝐼 .
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Thus, the answer to the first question is no, not all profiles are
𝑑-Euclidean. If 𝑑 < min{𝐼 − 1, 𝐴 − 1}, then there exists at least one
profile Π ∈ P𝐴,𝐼 which cannot be losslessly represented with a
𝑑-Euclidean model. Is this really that big a deal? Maybe the profiles
that are not 𝑑-Euclidean are only a small number of pathological
edge cases that are unlikely to be encountered in the real world.

2.2 How Common are Non-Euclidean Profiles?
For a given 𝑑 < min{𝐼 − 1, 𝐴 − 1}, what proportion of preference
profiles in P𝐴,𝐼 are not 𝑑-Euclidean? Bogomolnaia and Laslier [3]
identified a class of pathological sub-profiles that, if present, causes
a profile to not be 𝑑-Euclidean for some 𝑑 .

Definition 1. A circulant pathology of size 𝑘 is a preference sub-
profile of 𝑘 alternatives 𝑎1, . . . , 𝑎𝑘 and individuals 1, . . . , 𝑘 such that

𝑎1 >1 𝑎2 >1 . . . >1 𝑎𝑘−1 >1 𝑎𝑘

𝑎2 >2 𝑎3 >2 . . . >2 𝑎𝑘 >2 𝑎1

.

.

.
.
.
.

.

.

.
.
.
.

𝑎𝑘 >𝑘 𝑎1 >𝑘 . . . >𝑘 𝑎𝑘−2 >𝑘 𝑎𝑘−1 .

If a profile Π ∈ P𝐴,𝐼 contains a circulant pathology of size 𝑘 as
a sub-profile, then Π is not 𝑑-Euclidean for any 𝑑 ≤ 𝑘 − 2 [3]. By
calculating the probability that a circulant pathology arises in a
profile constructed uniformly at random, we derive a lower bound
on the proportion of profiles that are not 𝑑-Euclidean.

Theorem 2 (lower bound on probability of circulant pathology).
Let 𝐴, 𝐼 , and 𝑑 be fixed positive integers such that 𝑑 < min{𝐼 , 𝐴 − 1},
and P(𝐶) be the probability that a profile chosen uniformly from P𝐴,𝐼
contains a circulant pathology of size 𝑘 ≥ 𝑑 + 2. Then,

P(𝐶) ≥ 1 −
(
1 −

𝐼∑︁
𝑘=𝑑+2

𝐵𝑘

) ⌊
𝐴
𝑑+2

⌋
,

where 𝐵𝑘 =
(𝐼
𝑘

) { 𝑘

𝑑 + 2

}
(𝑑 +2)!

(
1

(𝑑+2)!

)𝑘 (
1 − 𝑑+2

(𝑑+2)!

)𝐼−𝑘
and

{
𝑘
𝑑+2

}
denotes a Stirling number of the second kind.

Numerically evaluating this expression for various𝐴, 𝐼 and 𝑑 shows
that when 𝑑 ≪ min{𝐼 , 𝐴}, almost all profiles are not 𝑑-Euclidean,
and for fixed 𝑑 and𝐴 the proportion seems to approach 1 as 𝐼 → ∞.
So what? If we approximate them with a Euclidean preference
model, is the approximation error big enough to worry about?

2.3 How Large is the Expected Error?
We consider this question from the perspective of individual pref-
erences, rather than complete profiles. Specifically, we (1) take an
arbitrary profile Π ∈ P𝐴,𝐼 ∗ consisting of 𝐼∗ unique preferences; (2)
approximate Π as well as possible in a 𝑑-dimensional Euclidean
model, and call this model Euclidean(Π); (3) observe a new pref-
erence 𝜋 generated uniformly from among all 𝐴! preferences; and
(4) let 𝜋 be the preference representable in Euclidean(Π) that min-
imizes 𝑚(𝜋, 𝜋) for some error measure 𝑚. That is, 𝜋 is the clos-
est possible approximation to 𝜋 in such a Euclidean preference
model. As our measure of error𝑚, we use the Kendall tau distance:
𝑚(𝜋, 𝜋 ′) = # pairwise disagreements between 𝜋 and 𝜋 ′ [13]. We
are interested in both E[𝑚(𝜋, 𝜋)] and E[𝑚(𝜋, 𝜋)]/

(𝐴
2
)
, which is the
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Figure 1: Lower bound on the expected error, as a percentage
of the maximum possible error.

expected number of adjacent swaps required as a proportion of the
maximum possible number of swaps between any two preferences.
Let 𝑟𝐴,𝑑 ≤ 𝐴! be the maximum number of unique preferences that
can be simultaneously represented in Euclideanmodel of dimension
𝑑 . In a lemma too long to state here [18, Lemma 1], we derive an
upper bound 𝑟 ≥ 𝑟𝐴,𝑑 . This bound, along with a geometric structure
called a permutohedron [8], allows us to prove the following result.

Theorem 3 (lower bound on expected error). Let 𝐴, 𝑑 be fixed
positive integers such that 𝑑 < 𝐴 − 1, Π ∈ P𝐴,𝐼 ∗ consist of 𝐼∗ unique
preferences, 𝜋 be a preference chosen uniformly at random from the
set of 𝐴! possible preferences, 𝜋 be the nearest preference to 𝜋 that is
representable in Euclidean(Π) (that is, the representable preference
that can be reached in the fewest number of adjacent swaps), and 𝐾
be a positive integer such that 𝐾 ≤

(𝐴
2
)
. If 𝐼∗ ≥ 𝑟𝐴,𝑑 , then

E[𝑚(𝜋, 𝜋)] ≥
𝐾∑︁
𝑘=0

(
𝐴! − 𝑛𝑘,𝐴

)
𝑟

(𝐴!)𝑟
1(𝑟 < 𝐴! − 𝑛𝑘,𝐴),

where (·)𝑟 denotes a falling factorial and 𝑛𝑘,𝐴 = min{(𝐴 − 1)𝑘 , 𝐴!}.

Figure 1 plots some values of the lower bound on E[𝑚(𝜋, 𝜋)]/
(𝐴
2
)
.

3 CONCLUSIONS
Our theoretical bounds show that when 𝑑 ≪ min{𝐼 , 𝐴} almost
all preference profiles are not 𝑑-Euclidean and, in some cases, the
expected error when approximating a newly observed preference
in the Euclidean model is at least 7% of the maximum possible error,
as measured by the Kendall tau distance. The assumptions of our
results may be met in social choice models of national elections,
in text embeddings used for natural language processing, and in
embeddings in recommender systems. To the extent that there are
true ordinal relationships in such domains, our results suggest that
these relationships may not be able to be closely approximated by
relatively low dimensional embeddings if the use of those embed-
dings assumes the Euclidean structure. This includes cases where
embeddings are compared using cosine similarity, and when the
SoftMax function [9, Sec. 6.2.2.3] is used to recover a probability
distribution over a set of alternatives. Our bound also provides a
means by which to quantify a trade-off between dimensionality
and accuracy, and hence inform the choice of 𝑑 .
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