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ABSTRACT
We present a detailed analysis of Nash equilibria in multi-objective

normal-form games, which are normal-form games with vectorial

payoffs. Our approach is based on modelling each player’s utility

using a utility function that maps a vector to a scalar utility. For

mixed strategies, we can apply the utility function before calculat-

ing the expectation of the payoff vector as well as after, resulting

in two distinct optimisation criteria. We show that when comput-

ing the utility from the expected payoff, a Nash equilibrium can

be guaranteed when players have quasiconcave utility functions.

In addition, we show that when players have quasiconvex utility

functions, pure strategy Nash equilibria are equal under both opti-

misation criteria. We extend this to settings where some players

optimise for one criterion, while others optimise for the second. We

combine these results and formulate an algorithm that computes all

pure strategy Nash equilibria given quasiconvex utility functions.
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1 INTRODUCTION
To function effectively in complex environments, artificial agents

must be equipped to deal with numerous challenges in their deci-

sion making. A first challenge is the presence of other agents that

interact with the environment andmay influence the outcome of dif-

ferent actions. Moreover, in many real-world applications, multiple

conflicting objectives need to be optimised simultaneously, necessi-

tating exploration of the trade-offs between them [8]. To study such
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complex scenarios, we turn to multi-objective games that combine

insights from game theory and multi-objective decision making.

We focus onMulti-Objective Normal-FormGames (MONFGs) [1],

a generalisation of (single-objective) Normal-Form Games (NFG).

We further take a utility-based approach which assumes the exis-

tence of a utility function for each agent that maps a vector to a

scalar utility [7]. In the case of a mixed strategy, agents can apply

their utility function either before calculating the expectation of

the payoff vector or after, resulting in two distinct optimisation

criteria. The former, referred to as the expected scalarised returns
(ESR) criterion, is applicable when optimising for the outcome of a

single strategy execution. The latter is referred to as the scalarised
expected returns (SER) criterion and is applicable when optimising

the utility of repeated plays of the game. It can be shown that the

choice of optimality criterion influences what strategies are optimal

[12] and presents different theoretical guarantees [6]. Consider for

example the payoffs (2, 0) and (0, 2) and the product utility function
𝑢 (𝑝1, 𝑝2) = 𝑝1 · 𝑝2. For a uniform mixture over the two payoffs, the

utility of the expected payoff is equal to one but is different than

the expected utility of the payoffs which is equal to zero. See [5]

for a survey of multi-objective multi-agent decision making.

Motivated by recent work in these games and their practical rele-

vance, we perform an in-depth study of Nash equilibria under both

optimisation criteria. The full version of this work with additional

motivation and proofs can be found in [9].

2 THEORETICAL CONTRIBUTIONS
We present novel results on the existence of equilibria in MONFGs

as well as the relations between ESR and SER. In addition, we study

blended settings where players may optimise for different criteria.

2.1 Nash Equilibrium Existence
Previous work has shown that Nash equilibria need not exist in

MONFGs with nonlinear utility functions under the SER criterion

[6]. Given these negative results, it is crucial to study what condi-

tions are necessary or sufficient to guarantee existence. In Theo-

rem 2.1 we contribute the first existence guarantee for this setting

by restricting the class of utility functions that players may use.
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Theorem 2.1. For any finite MONFG under SER where players
have continuous quasiconcave utility functions, a Nash equilibrium
is guaranteed to exist.

The proof relies on the reduction of the MONFG to an equivalent

single-objective game with an infinite number of pure strategies

[11]. In such games, the guarantee for quasiconcave utility functions

is known which allows us to introduce it for MONFGs. We note that

quasiconcavity is a relaxation of concavity and has been considered

a suitable representation of human preferences [3].

Recent follow-up work showed that it is also always possible

to transform an infinite game into an MONFG [10]. The resulting

equivalence between MONFGs and infinite games is referred to as

pure strategy equivalence and enables the exchange of theoretical

and algorithmic results.

Contrary to the positive result for quasiconcave utility func-

tions, we find that it is possible to construct games without Nash

equilibria when restricting players to strictly convex utility func-

tions. This further precludes existence guarantees under convex or

quasiconvex utility functions.

2.2 Equilibrium Relations
It is known that an MONFG under ESR can be reduced to a (single-

objective) NFG, called the trade-off game. As NFGs have been well-

studied both theoretically and algorithmically, it is important to

determine when the ESR and SER criteria correspond. However,

here we obtain the negative result that, in general, both the number

of equilibria as well as the equilibria themselves may be different.

We formally show this by constructing games with the desired

properties [9].

Theorem 2.2. Consider an MONFG with at least one Nash equi-
librium under SER and ESR. The sets of Nash equilibria may have
different cardinality and be disjoint.

The main issue that leads to Theorem 2.2 is that a function

applied to the expectation of a random variable is not generally

equal to the expectation of the function applied to the random

variable. We can sidestep this problem by focusing on pure strategy

Nash equilibria where players deterministically play a single action.

Here, we leverage a generalised version of Jensen’s inequality to

show that when restricting the utility functions to be quasiconvex,

pure strategy Nash equilibria under ESR and SER correspond.

Theorem 2.3. For any MONFG where players have quasiconvex
utility functions, the pure strategy Nash equilibria are equal under
SER and ESR.

2.3 Blended Settings
Finally, we consider a novel setting for MONFGs where some play-

ers optimise for SER and others for ESR. One example of such a

setting is a job market where an employer repeatedly offers posi-

tions with the same terms and conditions to different job seekers

who play the game only once. Here, the employer may care about

the utility of the expected payoff they get from shaping their team,

and balancing the talents of some employees with others, while

each job seeker cares about maximising their expected utility from

the job interview. We refer to these settings as blended settings. A

Nash equilibrium is defined as a joint strategy where no player can

unilaterally deviate and improve on their respective optimisation

criterion. We find that Theorem 2.3 is straightforward to extend to

this setting.

Theorem 2.4. Consider an MONFG where each player has a qua-
siconvex utility function. The set of pure strategy Nash equilibria in
the trade-off game is equal to the set of pure strategy Nash equilibria
in any blended setting.

Note that Theorem 2.4 holds true irrespective of which players

optimise for ESR and SER and even how many optimise for either

criterion. Furthermore, we may exploit Theorems 2.3 and 2.4 for

a novel Nash equilibrium existence guarantee. Concretely, if the

MONFG has quasiconvex utility functions and its trade-off game

belongs to a class of games with pure strategy Nash equilibrium

guarantees, this guarantees a pure strategy Nash equilibrium in

the MONFG as well. Potential games are a well-known example of

such a class of NFGs [4].

3 ALGORITHMIC IMPLICATIONS
The contributions presented here lead to a straightforward algo-

rithm for computing all pure strategy equilibria in any MONFG,

given that quasiconvex utility functions are assumed
1
. The algo-

rithm can be summarised by its two steps. First, it is needed to

compute the trade-off game. This can be done by applying the util-

ity function of each player to their vectorial payoff matrices. The

resulting (single-objective) payoff matrices can then be shown to

be equivalent to the MONFG under ESR [6].

Second, the set of pure strategy Nash equilibria needs to be

computed in the trade-off game. A naive approach is to enumerate

all joint strategies and verify for each player that no gain is possible

by deviating to a different strategy. The joint strategies that remain

are then the pure strategy Nash equilibria in the trade-off game and,

due to the shown theorems, also equilibria under ESR, SER and any

blended setting. We note that there exist alternative methods that

compute the set of pure strategy equilibria in NFGs with improved

computational complexity [2]. Additionally, the second step of the

algorithm can be adapted to find a sample pure strategy Nash

equilibrium rather than the full set.

Finally, a similar approach is possible for computing the pure

strategy equilibria in an MONFG with arbitrary utility functions.

Concretely, one can enumerate all joint strategies and subsequently

verify for each player that their strategy is a best response. However,

verifying a best response requires performing a global optimisation

subroutine. The benefit of the proposed algorithm is that it avoids

doing such costly optimisations by first reducing to a trade-off NFG.

4 FUTUREWORK
For future work, we focus on the interplay between theory and

practice. First, we aim to obtain more comprehensive existence

guarantees and develop criteria for identifying situations where

equilibria are guaranteed to not exist. This leads to the second

goal, which is to design algorithms that leverage this knowledge

to learn or compute (approximate) equilibria. Finally, it may be

interesting to investigate the application of these techniques to real-

world problems, such as resource allocation, traffic management,

or market competition.

1
Weprovide an implementation of this algorithm in https://github.com/wilrop/moqups.
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