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ABSTRACT
Weighted Majority Voting (WMV) is a well-known decision making

rule. The weights of sources are determined by the probabilities that

sources provide accurate information (trustworthiness). However,
in reality, the trustworthiness is usually not a known quantity to

the decision maker – they have to rely on an estimate called trust.
An algorithm that computes trust is called unbiased when it has the

property that it does not systematically overestimate or underesti-

mate the trustworthiness. To formally analyze the uncertainty to

the decision process brought by such unbiased trust values, we in-

troduce and analyze two important properties of WMV: stability of
correctness and stability of optimality. We also provide an overview

of how sensitive decision accuracy is to the changes in trust and

trustworthiness.
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1 INTRODUCTION
Weighted Majority Voting has long been a popular decision-making

mechanism, which has been applied in a variety of domains rang-

ing from voting, crowdsourcing, classification to trust systems and

even distributed systems [14, 15, 17, 19, 21]. In WMV, decisions

are derived based on aggregating the feedback from a collection of

sources. Each source is assigned a weight and that weight depends

on how trustworthy the source is in providing the feedback that cor-

responds to the correct decision, denoted as trustworthiness, which
is usually modeled as a probability value [12, 18]. A decision-maker

usually has to resort to an estimation or a belief about trustwor-

thiness, denoted as trust that may not equal trustworthiness [20].
We focus on the question: is WMV able to maintain a tolerant level
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of decision incorrectness with the inaccuracy in the estimation of

trustworthiness bounded, meaning having certain levels of stability

w.r.t the inaccurate estimation?

We propose a formal analysis of the stability properties of WMV.

Firstly, we study how sensitive the decision accuracy is to the

changes in source trust and trustworthiness, with both the argu-

ments taking fixed values. Secondly, we consider unbiased esti-

mation of trustworthiness
1
and its influence to WMV. We define

Stability of Correctness, which measures whether the decision accu-

racy in belief equals that in reality, and prove WMV has absolute

stability. Besides, we define Stability of Optimality, which measures

the gap in decision accuracy between the cases where trust is used

and where trustworthiness is used. We prove the degradation in

decision accuracy caused by the incorrect but unbiased trust is

relatively tightly bounded. That is, decision accuracy with unbiased

trust will not be too far off the theoretically determined value.

2 WEIGHTED MAJORITY VOTING AND
PARAMETER SENSITIVITY

2.1 Formal Framework
We outline a formal framework to support our study of the stability

of WMV. Consider a decision-making scenario, a decision maker is

faced with multiple possible decisions O={𝑜1, 𝑜2, . . . 𝑜𝐿}, and only

one of them is correct denoted as 𝐶 . The decision maker receives

feedback𝒇 :𝒇=(𝑓1, . . . , 𝑓𝑛) from a set of sources:S={𝑠1, .., 𝑠𝑛}, where
𝑓𝑖 denoting an outcome of random variable 𝐹𝑖 with 𝑭=(𝐹1, . . . , 𝐹𝑛).
For WMV, we assume a one-to-one correspondence between the

feedback that suggests the correct decision and the correct decision

itself, and denote 𝐹𝑖=𝐶 iff 𝑓𝑖 suggests correctly, 𝐹𝑖 ∈ O. For source

𝑖 , let Pr(𝐹𝑖=𝐶)=𝑝𝑖 be its trustworthiness and 𝒑=(𝑝1, . . . , 𝑝𝑛), and
an estimation of it is denoted as 𝑝𝑖 (trust), with �̂�=(𝑝1, . . . 𝑝𝑛).

Definition 1 (Weighted Majority Voting D𝑊 ). Given a set
of 𝑛 sources S, their trustworthiness 𝒑 and independent feedback 𝒇 ,
D𝑊 makes decisions via the function [5, 16, 17]:

D𝑊 (𝒇 ) = argmax𝑜∈O
©«
∑︁
𝑖:𝑓𝑖=𝑜

𝑤𝑖 · 𝑓𝑖
ª®¬ (1)

where 𝑝𝑖 ≥ 0.5, 𝑓𝑖 ∈ O, and𝑤𝑖= log(𝑝𝑖/1−𝑝𝑖 ).

1
Generally, the estimation error always exists, but it is relatively small and can be zero

on average with sufficient data in a statistical way [4, 9]
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WMV has been proven to be optimal when trustworthiness 𝒑 is

used for decision making [17]. Trustworthiness is usually unknown

in practice and the weight assigned to each source depends on trust

instead:𝑤𝑖 = log(𝑝𝑖/1−𝑝𝑖 ). We introduce the probability of WMV’s

making correct decisions (decision accuracy) as [6, 15]:

Pr(D𝑊 (𝒇 ) = 𝐶) ≜ 𝜔 (�̂�,𝒑) (2)

In Equation 2, the first parameter of the function 𝜔 () represents
the value used for decision-making, while the second represents

the value for computing the probability of deciding correctly. Both

the parameters can be either trust or trustworthiness, resulting

in different meanings of decision accuracy. The quantity 𝜔 (𝒑,𝒑)
denotes the "ideal" decision accuracy, where the decision maker

magically knows the trustworthiness values. The quantity 𝜔 (�̂�,𝒑)
denotes the "practical" decision accuracy, where the decision maker

decides with trust, but the accuracy he actually achieves depends

on trustworthiness. The quantity 𝜔 (�̂�, �̂�) denotes the decision ac-

curacy "in belief", which represents what the decision maker thinks

he can obtain while the actual accuracy may be different.

2.2 Parameter Analysis
In this section, we analyze how changes in the values of trust and

trustworthiness influence the decision accuracy or the correctness

of WMV. Firstly, we analyze the case where the parameter used for

making decisions and that for computing accuracy are equal. There

are two different rationales for doing this, i.e., the "ideal" decision

accuracy 𝜔 (𝒑,𝒑) and the decision accuracy "in belief" 𝜔 (�̂�, �̂�), but
the mathematics is identical for both.

Lemma 1. Let 𝑓 (𝑝𝑖 )=𝜔 (𝒑,𝒑), where 𝑝 𝑗 is constant for 𝑗 ≠ 𝑖 . The
function 𝑓 (𝑝𝑖 ) is a piecewise linear non-decreasing convex function.

Meanwhile, when multiple sources vary, the accuracy is also a

piecewise non-decreasing function. Generally, if a source is more

trustworthy, the decision accuracy increases with a positive second

derivative.

With the help of Lemma 1, we can analyze the cases where trust-

worthiness and trust are not identical. When trustworthiness varies

with trust value fixed, the line or surface of 𝜔 (�̂�,𝒑) corresponds to
one of the segments from the piecewise function in Lemma 1.

When trust varies with trustworthiness value fixed, the accu-

racy 𝜔 (�̂�,𝒑) is a discontinuous staircase function consisting of flat

plateaus, achieving maximum at the plateau containing �̂�=𝒑. An
insight is that the nearby points are more likely to be on the same

plateau, meaning a small estimation deviation may be unlikely to

affect the accuracy.

3 STABILITY ANALYSIS
We introduce random variables for our parameters, i.e., 𝑷 (𝑷 =

(𝑃1, · · · , 𝑃𝑛)) and 𝑷 (𝑷 = (𝑃1, · · · , 𝑃𝑛)). The uncertainty of source

trustworthiness may be due to lack of behavior consistency or

experience, so the sources cannot provide stable-quality feedback

[8, 22]. On the other hand, inadequate interaction with sources

or inaccurate modeling by decision makers may incur uncertain

trust estimation [10, 11]. Practical usage of WMV must have some

procedures to arrive at values for �̂� to assign weights. Depending

on the quality of the algorithm, there is a degree of correlation

between trust and trustworthiness. We consider the procedure to

get the unbiased trust: E(𝑷 ) = �̂�, which is a reasonable assumption

for learning-based procedures [2, 13].

If the trustworthiness of a source is less than its trust, 𝑝 < 𝑝 ,

then the actual correctness achieved is lower than what the decision

maker believes: 𝜔 (�̂�,𝒑)<𝜔 (�̂�, �̂�), while it is higher when 𝑝 > 𝑝 .

The main result is that, as long as the trust values used for decision-

making are unbiased, the decision accuracy that D𝑊 is believed

to achieve 𝜔 (�̂�, �̂�), equals what it actually achieves on average :

E(𝜔 (�̂�, 𝑷 )) = ∑
𝒑 Pr(𝑷 = 𝒑)𝜔 (�̂�,𝒑). We call this property Stability

of Correctness, and prove it absolutely holds for WMV.

Theorem 1. Stability of Correctness: If �̂� = E(𝑷 ), then
E(𝜔 (�̂�, 𝑷 )) − 𝜔 (�̂�, �̂�) = 0 (3)

A better procedure to obtain trust returns values closer to the

trustworthiness values, with little variance. The quality of the pro-

cedure does not affect the stability of correctness at all when its

unbiased on average, e.g., the shape of the trustworthiness distri-

bution is irrelevant, which may initially seem counter-intuitive.

However, Stability of Optimality captures the idea that even when

its unbiased, poor trust values still result in worse performance of

WMV. It measures the difference between the actual accuracy of de-

cisionsmade using trust valuesE(𝜔 (�̂�, 𝑷 )), and of thosemade using

trustworthiness values, i.e., E(𝜔 (𝑷 , 𝑷 )) = ∑
𝒑 Pr(𝑷 = 𝒑)𝜔 (𝒑,𝒑).

Theorem 2. Stability of Optimality: If �̂�=E(𝑷 ) and all 𝑃𝑖 have
support [𝑝𝑖 − 𝛿𝑖 , 𝑝𝑖 + 𝛿𝑖 ], then

E(𝜔 (𝑷 , 𝑷 )) − E(𝜔 (�̂�, 𝑷 )) ≤ 1 − 𝜔 (�̂�, �̂�)
2

𝑛∑︁
𝑖=1

𝛿𝑖

1 − 𝑝𝑖
(4)

Although there is a gap between making decisions based on

unbiased trust and based on trustworthiness, Theorem 2 proves that

this gap is bounded by a relatively small threshold, implying that the

unbiased trust would not reduce the decision quality too much. The

upper bound is influenced by the distribution of trustworthiness,

and converges towards zero with the variance of that reducing.

We also provide numerical experiments to demonstrate how

the parameters influence Stability of Optimality, refer to our full

paper [3]. The experiments imply that the accuracy gap is indeed

sensitive to parameter 𝛿 , which depicts the range and variance of

sources’ trustworthiness, but counter-intuitively, is not sensitive to

the number of sources.

4 DISCUSSION
For future work, more precise bounds for stability of optimality

can be obtained with more detailed information provided, e.g., the

variance of trustworthiness. Besides, it is worth investigating the

stability of WMV in a more general case, namely when trust is

a biased estimate of trustworthiness. It is a possible solution to

distribute more estimate errors on sources that nearly have no

influence on the decision result [1, 7]. Lastly, the proposed formal

framework and the two types of stability can also be generalized to

analyze the stability of other types of decision mechanisms.
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