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ABSTRACT
Indivisible participatory budgeting (PB) is a framework that aggre-
gates the preferences of voters to decide the distribution of budget
among a set of projects. The existing literature assumes that each
project has only one possible cost. In this work, we let each project
have a set of permissible costs, each reflecting a possible degree of
sophistication of the project. Each voter approves a range of costs
for each project, by giving an upper and lower bound on the cost
that she thinks the project deserves. We prove that the existing pos-
itive results can also be extended to our framework where a project
has several permissible costs, and also present new computational
and axiomatic results.
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1 INTRODUCTION
Participatory budgeting (PB) is a democratic voting paradigm that
aggregates the opinions of citizens to decide how to fund the public
projects. It is being implemented in hundreds of municipalities and
institutions in various countries throughout the world [8, 17, 18].
PB is classified into two models: divisible PB and indivisible PB.

Divisible PB assumes that the costs of the projects are totally
flexible and any amount can be allocated to each of them [1, 2, 6,
11, 22]. The existing work on indivisible PB, on the other hand,
assumes that every project has a fixed cost that is to be allocated if
the project is selected [5, 13, 14, 16, 19, 20, 23].

However, many times in real-world, each project can be im-
plemented upto different levels of sophistication. For example, a
shopping mall can be constructed in different sizes and magnitudes,
or a building can be constructed with different materials. That is,
in our model, each project has a set of permissible costs. Each cost
in this set corresponds to a degree of sophistication of the project.
The PB rule must choose the projects that are to be funded and also
a permissible cost for each of them.
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The preference elicitation methods typically studied in PB in-
clude approval votes, ordinal votes, and cardinal votes [4, 5, 10,
12, 15, 16, 19, 21, 23]. However, the preferences and utilities of the
voters in PB are much more complex. This propels the need to
devise preference models specific to PB context, as pointed out
by Aziz and Shah [7]. Our paper narrows this gap by introducing
ranged approval votes, which strictly generalize the approval votes.
Each voter reports a lower bound and an upper bound on the cost
that she thinks each project deserves. All the bounds are initially
set to 0 by default. Voting proceeds in two steps. In the first step,
the voter starts by approving the projects she likes. For these ap-
proved projects, only the upper bounds will automatically change
to the highest permissible cost. In the second step, the voter may
optionally change bounds for some of these approved projects, if
she wishes to have a say on the amount they deserve.

Goel et al. [14] study a special case of the ranged approval votes
where lower bounds are always 0. Talmon and Faliszewski [23]
study another special case where every project has only one cost.

2 MODEL
Let 𝑏 be the budget, 𝑁 = {1, . . . , 𝑛} be the set of voters and 𝑃 be
the set of𝑚 projects. Each project 𝑗 ∈ 𝑃 has 𝑡 𝑗 possible degrees of
sophistication captured by the set D

(
𝑃 𝑗
)
= {𝑃0

𝑗
, 𝑃1

𝑗
, . . . , 𝑃

𝑡 𝑗
𝑗
}. The

cost of each degree 𝑃𝑡
𝑗
is indicated by 𝑐𝑡

𝑗
. We assume that 𝑐0

𝑗
is

zero for all 𝑗 ∈ 𝑃 and it corresponds to not funding the project
𝑗 . Let D denote the set of all the possible degrees of all projects,
or in other words, D =

⋃
𝑗∈𝑃 D

(
𝑃 𝑗
)
. We denote the cost of a set

𝑆 ⊆ D,
∑
𝑃𝑡
𝑗
∈𝑆 𝑐

𝑡
𝑗
, by c(𝑆) . Each voter 𝑖 ∈ 𝑁 reports for every

project 𝑗 , a lower bound 𝑙𝑖 ( 𝑗) and an upper bound ℎ𝑖 ( 𝑗) such
that 𝑙𝑖 ( 𝑗), ℎ𝑖 ( 𝑗) ∈ {𝑐0

𝑗
, . . . , 𝑐

𝑡 𝑗
𝑗
} and 𝑙𝑖 ( 𝑗) ≤ ℎ𝑖 ( 𝑗).

Given a subset 𝑆 ⊆ D, 𝑆 ( 𝑗) denotes 𝑆 ∩ D
(
𝑃 𝑗
)
and 𝑐𝑆 ( 𝑗)

denotes c(𝑆 ( 𝑗)) . A subset 𝑆 ⊆ D is valid if c(𝑆) ≤ 𝑏 and |𝑆 ( 𝑗) | = 1
for every 𝑗 ∈ 𝑃 . LetV be the collection of all the valid subsets. The
objective of a PB rule 𝑅 is to output a valid subset 𝑆 ∈ V for a given
instance 𝐼 = ⟨𝑁,D, c, 𝑏, (𝑙𝑖 ( 𝑗), ℎ𝑖 ( 𝑗))𝑖, 𝑗 ⟩.

2.0.1 The PB Rules. We study utilitarian rules, i.e., given a utility
function 𝑢, the rule outputs a valid set of projects that maximizes∑
𝑖∈𝑁 𝑢𝑖 (𝑆). We say a set 𝑆 is selected if it maximizes the total utility.

We say a project 𝑃𝑡
𝑗
∈ D wins under a PB rule 𝑅 if it belongs to

some set that can be selected under 𝑅. Let 𝑅 (𝐼 ) be the collection of
all the projects that win under the PB rule 𝑅, given an instance 𝐼 .
We define four PB rules each with a different utility function:

(1) 𝑹 |𝑺 | : 𝑢𝑖 (𝑆) = | 𝑗 ∈ 𝑃 : 𝑙𝑖 ( 𝑗) ≤ 𝑐𝑆 ( 𝑗) ≤ ℎ𝑖 ( 𝑗) |.
(2) 𝑹c(𝑺 ) : 𝑢𝑖 (𝑆) =

∑
𝑗 :𝑙𝑖 ( 𝑗 )≤𝑐𝑆 ( 𝑗 )≤ℎ𝑖 ( 𝑗 )

𝑐𝑆 ( 𝑗).
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RULES Exact Approximation FPTComputation
𝑹 |𝑺 | P N.A. N.A.

𝑹c(𝑺 ) , 𝑹Ec(𝑺 ) Weakly NP-hard FPTAS w.r.t. 𝛿
w.r.t.𝑚

𝑹∥ ∥ NP-hard FPTAS w.r.t. 𝛿
parameterized by 𝛾 w.r.t.𝑚

Table 1: Computational complexity of PB rules

PROPERTIES\RULES 𝑹 |𝑺 | 𝑹c(𝑺 ) 𝑹Ec(𝑺 ) 𝑹∥ ∥

Shrink-resitance ✓ ✓ ✓ ✓
Discount-proofness ✓ × × ×
Degree-efficiency × × ✓ ×
Lower bound-sensitivity × × × ✓
Upper bound-sensitivity ✓ ✓ × ✓
Range-unanimity ✓ × × ✓
Range-abidingness ✓ × × ✓
Range-convergingness ✓ ✓ ✓ ✓

Table 2: Results for budgeting axioms in Section 4

(3) 𝑹Ec(𝑺 ) : With slight abuse of notation, 𝑢𝑖 (𝑆) =
∑

𝑗∈𝑃 𝑢𝑖 (𝑆, 𝑗),
where 𝑢𝑖 (𝑆, 𝑗) is defined as follows:

𝑢𝑖 (𝑆, 𝑗)=


0 𝑐𝑆 ( 𝑗) < 𝑙𝑖 ( 𝑗)
𝑐𝑆 ( 𝑗) 𝑙𝑖 ( 𝑗) ≤ 𝑐𝑆 ( 𝑗) ≤ ℎ𝑖 ( 𝑗)
ℎ𝑖 ( 𝑗) otherwise

(4) 𝑹∥ ∥ : With slight abuse of notation, 𝑢𝑖 (𝑆) =
∑

𝑗∈𝑃 𝑢𝑖 (𝑆, 𝑗),
where 𝑢𝑖 (𝑆, 𝑗) is defined as follows:

𝑢𝑖 (𝑆, 𝑗)=


𝑐𝑆 ( 𝑗) − 𝑙𝑖 ( 𝑗) 𝑐𝑆 ( 𝑗) < 𝑙𝑖 ( 𝑗)
0 𝑙𝑖 ( 𝑗) ≤ 𝑐𝑆 ( 𝑗) ≤ ℎ𝑖 ( 𝑗)
ℎ𝑖 ( 𝑗) − 𝑐𝑆 ( 𝑗) otherwise

The first two utilities are the natural extensions to notions in [23].
Former reflects that the voter is happy as long as the cost allocated
is acceptable to her, whereas the latter reflects that among the
acceptable costs, the voter is happier from the higher cost. The third
notion assumes that the voter is indifferent to more amount being
spent, whereas the fourth one assumes that farther the allocated
cost is from the acceptable range, lesser is the utility.

3 COMPUTATIONAL COMPLEXITY
We present in Table 1, the complexity of computing a valid subset
that maximizes the total utility, for each of our rules. Here, the

parameter 𝛿 denotes scalable limit [21], which is
max

𝑃𝑡
𝑗
∈D 𝑐𝑡

𝑗

𝐺𝐶𝐷 (𝑐1
1,...,𝑐

𝑡𝑚
𝑚 ,𝑏 )

and𝛾 denotes the novel parameter𝑞𝑚/𝑞𝜎 where𝑞𝑚 = max𝑃𝑡
𝑗
∈D 𝑞𝑡

𝑗

with 𝑞𝑡
𝑗
=

∑
𝑖:𝑐𝑡

𝑗
<𝑙𝑖 ( 𝑗 ) (𝑙𝑖 ( 𝑗) − 𝑐𝑡

𝑗
) + ∑

𝑖:ℎ𝑖 ( 𝑗 )<𝑐𝑡𝑗 (𝑐
𝑡
𝑗
− ℎ𝑖 ( 𝑗)), and

𝑞𝜎 =
∑

𝑗∈𝑃 min𝑡 ∈D(𝑃 𝑗 ) 𝑞
𝑡
𝑗
.

4 BUDGETING AXIOMS
Though there is an enormous amount of work on the axiomatic
study in PB [3, 5, 9, 16, 21, 23], the uniqueness of our model moti-
vates us to propose new axioms that are explicitly relevant here.

4.0.1 Monotonicity Axioms. Shrink-resistance requires that if the
reported boundmoves closer to the selected degree, the same degree
must continue to be selected. Discount-proofness ensures that if a
selected degree becomes more affordable, it continues to win.

Definition 1 (Shrink-resistance). For any instance 𝐼 , a voter
𝑖 , any 𝑗 ∈ 𝑃 , it holds that a set 𝑆 selected under 𝑅 continues to be
selected even if 𝑙𝑖 ( 𝑗) and ℎ𝑖 ( 𝑗) are shifted closer to 𝑐𝑆 ( 𝑗) .

Definition 2 (Discount-proofness). For any instance 𝐼 , any
project 𝑗 ∈ 𝑃 , and a set 𝑆 that is selected, 𝑆 continues to be selected if
𝑐𝑆 ( 𝑗) is decreased by 1.
4.0.2 Efficiency Axioms. . The axiom degree-efficiency requires that
if the selected degree of a project can be increased without disturb-
ing the costs allocated to other projects, then the rule must do so.
Lower-bound and upper-bound sensitivities essentially mean that an
outcome whose selected degrees are closest to the bounds reported
by all the voters (if not within them) is preferred over the others.

Definition 3 (Degree-efficiency). For any instance 𝐼 , any 𝑗 ∈ 𝑃 ,
and any selected set 𝑆 , we have 𝑘 > 𝑆 ( 𝑗) =⇒ c(𝑆) − 𝑐𝑆 ( 𝑗) + 𝑐𝑘

𝑗
> 𝑏.

Definition 4 (Lower bound-sensitivity). For any instance 𝐼 ,
any project 𝑗 ∈ 𝑃 , and any two valid set 𝑆, 𝑆 ′ such that for every voter
𝑖 ∈ 𝑁 we have 𝑐𝑆 ( 𝑗) < 𝑐𝑆

′ ( 𝑗) < 𝑙𝑖 ( 𝑗), 𝑆 is not selected under 𝑅.

Definition 5 (Upper bound-sensitivity). For any instance 𝐼 ,
any 𝑗 ∈ 𝑃 , and any two valid sets 𝑆, 𝑆 ′ such that for every voter 𝑖 ∈ 𝑁

we have 𝑐𝑆 ( 𝑗) > 𝑐𝑆
′ ( 𝑗) > ℎ𝑖 ( 𝑗), 𝑆 is not selected under 𝑅.

4.0.3 Unanimity Axioms. Let 𝜏 𝑗 represent the intersection of in-
tervals reported by all the voters for project 𝑗 and 𝜏 𝑗 = max (𝜏 𝑗 ).
Range-unanimity requires that if allocating 𝜏 𝑗 to every 𝑗 is feasible,
then the rule must do so. Range-abidingness requires that the se-
lected cost of a project cannot be higher than 𝜏 𝑗 . Note that the above
both axioms do not imply each other, though they seem closely
related. Range-convergingness requires that increasing 𝑏 moves the
selected cost of at least one project 𝑗 closer to 𝜏 𝑗 .

Definition 6 (Range-unanimity). For any instance 𝐼 , whenever∑
𝑗∈𝑃 𝜏 𝑗 ≤ 𝑏, the set {𝑃𝑡

𝑗
: 𝑗 ∈ 𝑃, 𝑐𝑡

𝑗
= 𝜏 𝑗 } is selected.

Definition 7 (Range-abidingness). For any instance 𝐼 , a project
𝑗 ∈ 𝑃 , and a selected set 𝑆 , we have 𝜏 𝑗 ≠ ∅ =⇒ 𝑐𝑆 ( 𝑗) ≤ 𝜏 𝑗 .

Definition 8 (Range-convergingness). For any instance 𝐼 , a
selected set 𝑆 , and a set 𝑆 ′ ≠ 𝑆 selected on increasing the budget, there
exists some project 𝑗 ∈ 𝑃 such that: 𝑐𝑆 ( 𝑗) ∉ 𝜏 𝑗 =⇒ |𝑐𝑆 ( 𝑗) − 𝜏 𝑗 | >
|𝑐𝑆 ′ ( 𝑗) − 𝜏 𝑗 |.

5 SUMMARY
We introduce the model with multiple degrees of sophistication
of projects and ranged approval votes. We generalize two existing
utility notions [23] and introduce two other novel notions. We
strengthen all the existing positive results [23] and also present
new parameterized tractability results. Each of these results can be
generalized to the model with cardinal utilities, but we confine to
ranged approval votes due to their practical relevance and simplicity.
Finally, we propose novel budgeting axioms and present axiomatic
analysis (Table 2). Note that the PB rule 𝑅∥ ∥ we introduced satisfies
as many axioms as any simple approval PB rule satisfies, thus
making it a very good choice for ranged approval votes.
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