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ABSTRACT
A crowdsourcing system such as Amazon’s Mechanical Turk al-

lows a crowdsource campaign initiator to recruit a large number of

workers to accomplish a task. The proper design of such a crowd-

sourcing system becomes very challenging when the task involves

multiple interdependent micro-tasks, and the initiator wants the

task to be completed with the minimal cost and a high probability

of success. In this paper, we address this challenge by designing

an EI (Effort Incentivization) mechanism, which utilizes the peer

effect to incentivize workers to act according to the initiator’s best

interest. We prove that EI is Bayesian incentive compatible and

Bayesian individually rational. Our analysis shows that when there

are multiple sequential interdependent micro-tasks, the initiator

should provide higher rewards to those workers responsible for

completing later stage micro-tasks. When there is a flexibility re-

garding the worker assignment to each micro-task, the initiator

should assign fewer workers to later stage micro-tasks to minimize

the initiator’s overall payment. Numerical results show that our

proposed EImechanism can reduce the initiator’s total payment by

more than 70%, compared to a fixed reward mechanism. By optimiz-

ing the numbers of workers assigned to different interdependent

micro-tasks, the initiator can reduce the total payment by up to

50% compared to a random assignment scheme.
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1 INTRODUCTION
Crowdsourcing, which often involves a large number of non-expert

agents in completing rather complicated tasks, is becoming an

increasingly popular approach to exploit the wisdom of crowd for

creating new products and services [11]. In crowdsourcing systems,

a crowdsource campaign initiator (“initiator" hereafter) can recruit

hundreds of workers through the Internet for accomplishing tasks,

and the workers obtain rewards during this process [19]. Typical

examples of crowdsourced tasks include image labeling [14] and

prediction [7]. For the ease of exposition, we refer to the initiator

as “she" and a worker as “he" in this paper.
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Due to the heterogeneity of workers in terms of their costs and

efforts when completing the tasks, the initiator has an uncertainty

regarding the task completion result, which leads to challenges in

terms of deciding the proper rewards to workers (which should

often be announced to the workers beforehand). Specifically, the

rewards should not just cover the workers’ costs but also encourage

the workers to exert their maximum efforts to accomplish the tasks.

However, the workers may have incentives to shirk (not exerting ef-

forts), as it can be very costly for the initiator to effectively monitor

each worker’s action. This is also called the hidden action problem
in the mechanism design literature.

To address the shirking problem in crowdsourcing systems, re-

searchers proposed several approaches [3, 5, 9, 12] to incentivize

workers to exert the amount of efforts desired by the initiator. The

basic idea of these approaches is to reward the worker based on

the difference between the actual outcome (e.g., realized stock price
after the prediction task is completed) and the task result that the

worker produced (e.g., the workers’ prediction of the stock price).

These approaches rely on the critical assumption that the actual

outcome can be verified by the initiator. Another key assumption

is that the worker’s response and the task outcome can be easily

compared. All the above mentioned literature has focused on the

incentive issues when workers work on independent micro-tasks.

In this paper, we will consider a more complicated yet practical

scenario, where the initiator wants workers to complete a sequence

of interdependent micro-tasks [2, 6, 15, 17]. The initiator divides the

workers into several groups and assigns one group to each micro-

task. While workers in the same group accomplish the same micro-

task simultaneously, workers in different groups complette the

micro-tasks sequentially (according to a given order). For example,

Bernstein et al. in [2] considered a Find-Fix-Verify (FFV) workflow

to correct a text. In more detail, the FFV workflow splits a complex

text editing task into three interdependent micro-tasks: Find, Fix,
and Verify. In the Find stage, a group of workers identify candidate

mistakes in the sentences. In the Fix stage, another group of workers

correct these mistakes. The final group of workers verify the fixed

results in the Verify stage.

The FFV workflow example shows that the performance of the

whole task depends on the efforts of workers in all threemicro-tasks.

Furthermore, the initiator may only observe the performance of

the whole task (e.g., how many mistakes have been corrected at the

end of the FFV workflow), as checking each micro-task’s outcome

may be very time and money consuming [4, 10, 16]. Hence, the

initiator cannot utilize the outcome of each micro-task, as proposed

in [3, 5, 9, 12], to evaluate the workers’ individual performances.

The key challenge that the initiator needs to solve is how to incen-

tivize workers to perform the interdependent micro-tasks without

monitoring the outcomes of individual micro-tasks, so that to obtain
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a high quality overall result with a minimum cost (total payment

to workers). In the rest of this paper, we will use “cost" and “total

payment to workers" interchangeably.

Several studies in [1, 8, 13, 18] proposed some mechanisms to

tackle the sequential hidden action problem in the context of supply

chain management, with the common assumption there is only one
worker working on each micro-task. In the crowdsourcing scenario

involving multiple workers per micro-task, however, the incentive

design problem is more challenging, as a worker who shirks will not

incur any cost and may only experience a slight group performance

degradation (if most other workers working on the same micro-task

exert their efforts) [10].

Again this background, this paper formulates and optimally

solves the incentive mechanism design problem in a sequential

crowdsourcing system. Specifically, we design an “EI" (Effort Incen-
tivization) mechanism that minimizes the initiator’s total reward to

workers, while guaranteeing a good performance of the whole task

by incentivizing all participating workers to exert effort. In EI, the
initiator only needs to verify the whole task outcome, instead of

checking the outcome of each micro-task. Furthermore, EI provides
guidance for the initiator to optimally allocate different numbers

of workers to finish different interdependent micro-tasks.

2 MODEL AND OBSERVATIONS
We consider a scenario where an initiator splits a complex task into

a set J = {1, . . . , 𝐽 } of 𝐽 micro-tasks. These micro-tasks are interde-

pendent and need to be accomplished sequentially. The interactions

between the initiator and the workers are as follows. The initiator

first announces the set of micro-tasks and a payment that is cal-

culated based on EI for a worker in 𝑗 ∈ J . Then, each worker in

micro-task 𝑗 chooses his effort level (i.e., shirking or not) based on

the reward function 𝑅 𝑗 , all his predecessors’ effort actions, and the

assumption that all other workers in the same micro-task will exert

effort to accomplish the same micro-task 𝑗 . After all micro-tasks

have been finished by workers, the initiator checks the outcome of

the whole task and pays workers based on the announced payment

function. As micro-tasks are interdependent and the whole task’s

success requires that all micro-tasks have been performed success-

fully, the whole task’s outcome is a function of all workers’ actions.

The probability of whole task success increases with the number

of workers exerting efforts. Note that the outcome of whole task

has only two states: the whole task failure (i.e., 𝑜wt (𝒂) = 0) and

the whole task success (i.e., 𝑜wt (𝒂) = 1). We present the high-level

structure of EI in Algorithm 1.

Our results give us the following observation:

(a) Under the homogeneous workers and homogeneous interde-

pendent micro-tasks scenario, the reward increases with the

worker’s cost 𝑐 , since a higher 𝑐 gives the worker more in-

centive to shirk. The reward increases with the micro-task’s

index 𝑗 . This is because, given this reward function, the

shirking of a worker will trigger all later workers to shirk.

With a larger micro-task’ index 𝑗 , the number of workers

who make decisions after a worker in micro-task 𝑗 decreases.

Then the impact of the worker’s shirking on the probability

of whole task success and the probability of the worker’s

Algorithm 1 Effort Incentivization (EI) Mechanism

1: The initiator announces the reward function 𝑅 𝑗 : [0, 1] × R𝐽+
for a worker in 𝑗 ∈ J ;

2: for Micro-task 𝑗 = 1 to 𝐽 do
3: Each worker 𝑛 ∈ N𝑗 in micro-task 𝑗 chooses his effort level

(i.e., shirking or not) based on the reward function 𝑅 𝑗 , all

his predecessors’ effort actions, and the assumption that all

other workers in the same micro-task will exert effort to

accomplish the same micro-task 𝑗 ;

4: end for
5: The initiator verifies the outcome of the whole task and trans-

fers the rewards to the workers accordingly.

receiving reward decreases. Hence, a worker working on a

later micro-task has a higher incentive to shirk.

(b) Consider the homogeneous workers and heterogeneous in-

terdependentmicro-tasks scenario, with a given set of worker

allocation schemes that achieve the same probability of

whole task success. In order to minimize the initiator’s total

payment, the initiator should select the worker allocation

scheme from the set such that the number of allocated work-

ers is non-increasing in the micro-task index.

(c) Consider the heterogeneous workers and heterogeneous in-

terdependent micro-tasks scenario, with a given number

of workers per micro-tasks. The initiator should select the

worker allocation scheme that assigns the lower costs of

workers to later stage micro-tasks and the higher costs of

workers to earlier stagemicro-tasks. Specifically, theworkers

are allocated to the sequential micro-tasks based on the de-

scending order of their costs. When the number of micro-

tasks is 𝐽 , we have min𝑛∈N𝑗
𝑐 𝑗,𝑛 ≥ max𝑛∈N𝑖

𝑐𝑖,𝑛,∀𝑖, 𝑗 ∈
J , 𝑖 > 𝑗 , where N𝑗 denotes the set of the workers assigned

to accomplished micro-task 𝑗 ∈ J and 𝑐 𝑗,𝑛 denotes the cost

of the worker 𝑛 in the micro-task 𝑗 ∈ J .

3 CONCLUSION
We study the hidden action problem and the workers allocation

problem in the sequential crowdsourcing. Our study generalizes two

groups of previous studies that look at only one of these problems,

respectively.We design an EImechanism to incentivize the workers

to exert efforts, so that the initiator can achieve a target probability

of whole task success with a minimum payment to the workers. Our

analysis shows that the initiator should select the worker allocation

scheme such that the number of allocated workers is non-increasing

in the micro-task index. Furthermore, the workers with lower cost

should be assigned to accomplish later stage micro-tasks.
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