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ABSTRACT
Mechanisms based on maximizing Nash Social Welfare (NSW) have
proven to be fair and efficient for a wide variety of fair division
problems. We study the fractional allocations maximizing NSW, i.e.,
a Nash-bargaining-based mechanism, for one-sided matching mar-
kets with endowments, under dichotomous utilities, and show that
they are the solutions of a rational convex program (RCP). More-
over, we provide a simple combinatorial polynomial time algorithm
to maximize NSW by identifying the Nash bargaining points with
the equilibrium of a novel type of market, the variable-budget mar-
ket model. Lastly, we show that maximizing NSW is strategyproof
under the assumption that the agents’ disagreement utilities are
public knowledge.
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1 INTRODUCTION
A one-sided matching market is defined by a set of n indivisible
goods and a set of n agents with preferences. The objective is to
find a matching of each agent to a distinct good that has desirable
fairness and efficiency properties. These markets can be classified
along two directions: whether the preferences are cardinal or ordi-
nal, and whether agents have initial endowments or not. Cardinal
preferences are more expressive than ordinal, and similarly, the
setting with endowments is more general than the no-endowments
case.

For the ordinal setting, three popular mechanisms are Probabilis-
tic Serial [9], Random Priority [23], and Top Trading Cycles [25].
The first two are with no endowments, and the last one is with
endowments. These mechanisms are polynomial-time computable
and have their pros and cons, detailed in Section 1.1. For the car-
dinal setting with no endowments, the famous mechanism is the
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Hylland-Zeckhauser (HZ) scheme [21], based on competitive equi-
librium. The main difficulty in using the HZ scheme in practical
applications is that computing even an approximate equilibrium in
this model is PPAD-complete [13, 26]. However, under dichotomous
preferences, a combinatorial polynomial-time algorithm [26] and a
rational convex program (RCP) [20] exist.

In this paper, we consider the more general setting of cardinal
preferences with endowments, which has several natural applica-
tions beyond the no-endowments case, e.g., allocating students to
rooms in a dorm for the next academic year, assuming their cur-
rent room is their initial endowment; and school choice, when a
student’s initial endowment is a seat in a school which they already
have. The HZ scheme with endowments was studied by Hylland
and Zeckhauser; however, their work culminated in an example
which inherently does not admit an equilibrium [21]. This led to
defining and studying approximation-based mechanisms [17, 20].
However, they are likely to be computationally intractable.

In view of the above-stated difficulties in terms of existence and
computational tractability, we explore an alternative solution for
a one-sided matching market with endowments, namely using a
Nash-bargaining-based approach. The Nash bargaining solution
has very desirable properties: it is computationally tractable, Pareto
optimal, symmetric, and has been found to be remarkably fair,
e.g., [2, 11, 23]. This aspect has been further explored under the
name of Nash Social Welfare [6, 12, 14, 15, 18, 19, 22]. In Section 1.3,
we define the notion of a Nash-bargaining based one-sided matching
market with initial endowments, which we abbreviate to 1NB.

We explore the well-studied case of dichotomous utilities; see
Section 1.1 for related work. Optimal allocations to an instance
of 1NB are obtained by optimally solving the non-linear convex
program (1) (Section 1.4). We ask if 1NB is polynomial-time solv-
able. A prerequisite for this is that each instance of 1NB should
admit a rational equilibrium. We establish this by showing that 1NB
under dichotomous utilities admits an RCP. Furthermore, our proof
provides valuable insights which lead us to a simple combinatorial
strongly polynomial-time algorithm: It turns out that the dual of
this convex program has two types of variables, one corresponding
to goods and the other corresponding to agents. Our proof of RCP
reveals the roles of these variables – as prices of goods and price-
offsets for agents. Additionally, it indicates how the money,mi of
an agent i should be defined and exactly how i’s allocation needs
to be paid for.

Using these insights, we give a novel market whose equilibrium
captures an optimal solution to program (1). We call it the variable-
budget market model; it can be viewed as a modification of the
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linear Fisher model. We next give a simple combinatorial strongly
polynomial-time mechanism for computing an equilibrium for this
model. It turns out thatmi is a function of the eventual utility, vi
of agent i . Our mechanism iteratively updates vi , and as a result, it
also keeps updatingmi , hence the name of the model. Finally, by
exploiting the combinatorial structure underlying this mechanism,
we manage to show it is also strategyproof under the assumption
that agents’ disagreement utilities are public knowledge.

1.1 Related Results
Matching markets have found applications in various multi-agent
settings, see e.g., [1, 3, 4, 8, 16].

We first state the properties of the mechanisms for one-sided
matching markets listed in the Introduction. Random Priority [23]
is strategyproof though not efficient or envy-free; Probabilistic
Serial [9] is efficient and envy-free but not strategyproof; and Top
Trading Cycles [25] is efficient, strategyproof and core-stable.

The study of the dichotomous case of matching markets was
initiated by Bogomolnaia and Moulin [10]. They studied a two-
sided matching market and they called it an “important special
case of the bilateral matching problem.” Using the Gallai-Edmonds
decomposition of a bipartite graph, they gave a mechanism that is
Pareto optimal and group strategyproof. They also gave a number of
applications of their setting, some of which are natural applications
of one-sided markets as well, e.g., housemates distributing rooms,
having different features, in a house. As in the HZ scheme, their
mechanism also outputs a doubly-stochastic matrix whose entries
represent probability shares of allocations. However, they give
another interesting interpretation of this matrix. They say, “Time
sharing is the simplest way to deal fairly with indivisibilities of
matching markets: think of a set of workers sharing their time
among a set of employers.” Roth, Sönmez and Ünver [24] extended
these results to general graphmatching under dichotomous utilities;
this setting is applicable to the kidney exchange marketplace.

The paper [2] defines the notion of a random partial improve-
ment mechanism for a one-sided matching market. This mechanism
truthfully elicits the cardinal preferences of the agents and outputs a
distribution over matchings that approximates every agent’s utility
in the Nash bargaining solution. For dichotomous preferences, [7]
showed that a Nash social welfare maximizing allocation can be
computed in polynomial-time and [5] studied truthful mechanisms.

1.2 One-Sided Matching Markets
A one-sided matching market consists of two types of entities, say
agents and goods, with only one side having preferences over the
other, i.e., agents over goods. LetA = {1, 2, . . .n} be a set ofn agents
and G = {1, 2, . . . ,n} be a set of n indivisible goods. The goal is
to allocate exactly one good to each agent ex-post (final integral
allocation).

Goods are rendered divisible by assuming that there is one unit
of probability share of each good, and utilities ui j ’s are defined as
the utility of agent i for the entire unit of good j. In the case of
dichotomous utilities, each ui j ∈ {0, 1}. Let xi j be the allocation of
probability share that agent i receives of good j. Then,

∑
j ui jxi j is

the expected utility accrued by agent i .

In the final ex-ante allocation, the total probability share allo-
cated to each agent is one unit, i.e., the entire allocation must form
a fractional perfect matching in the complete bipartite graph over
vertex sets A and G (i.e.,

∑
j ∈G xi j = 1,∀i ∈ A; xi j ≥ 0). Clearly,

the ex-ante allocation can be viewed as a doubly stochastic ma-
trix. The Birkhoff-von Neumann procedure then extracts a random
underlying perfect matching in such a way that the expected util-
ity accrued to each agent from the integral perfect matching (i.e.,∑
j ∈G xi j = 1,∀i ∈ A; xi j ∈ {0, 1}) is the same as from the frac-

tional perfect matching. Since ex-ante Pareto optimality implies
ex-post Pareto optimality, the final integral allocation will also be
Pareto optimal if its corresponding ex-ante allocation is Pareto
optimal.

1.3 The Model 1NB
In this section, we define themodelNash-bargaining-based one-sided
matching market with initial endowments, which we abbreviate to
1NB. We are given a fractional perfect matching xE which specifies
the initial endowments of all agents, each agent getting a total
of one unit of goods. Clearly xE and the utility functions of all
agents define the utility accrued by each agent from her initial
endowment. We will take this to be agent i’s disagreement point ci
and will interpret the problem as a Nash bargaining problem.

The feasible set N is defined as follows. Let x be a fractional
perfect matching over the agents A and goods G and let vx be an
n-dimensional vector whose components are the utilities derived
by the agents under the allocation given by x . Then N is the set of
all vx corresponding to all fractional perfect matchings x .

1.4 RCP for 1NB under Dichotomous Utilities
In this section we will show that program (1) for the model 1NB
is a rational convex program for the case of dichotomous utilities.
This will establish the useful property that the model always admits
an optimal solution using rational numbers — a pre-requisite for
seeking a combinatorial, efficient algorithm. In addition, it will
provide important insights into the nature of the dual variables pj
and qi ; these will help in defining a market model whose equilibria
correspond to the optimal solutions of (1).

max
∑
i ∈A

log(vi − ci ) (1a)

s.t. vi =
∑
j
ui jxi j ∀i ∈ A, (1b)∑

j
xi j ≤ 1 ∀i ∈ A, (1c)∑

i
xi j ≤ 1 ∀j ∈ G, (1d)

xi j ≥ 0 ∀i ∈ A,∀j ∈ G (1e)
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