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ABSTRACT
Agent based modeling (ABM) is a computational approach to mod-
eling complex systems by specifying the behavior of autonomous
decision-making components or agents in the system and allowing
the system dynamics to emerge from their interactions. Recent
advances in the field of Multi-agent reinforcement learning (MARL)
have made it feasible to study the equilibrium of complex envi-
ronments where multiple agents learn simultaneously. However,
most ABM frameworks are not RL-native, in that they do not of-
fer concepts and interfaces that are compatible with the use of
MARL to learn agent behaviors. In this paper, we introduce a new
open-source framework, Phantom, to bridge the gap between ABM
and MARL. Phantom is an RL-driven framework for agent-based
modeling of complex multi-agent systems including, but not lim-
ited to, economic systems, markets and auctions. The framework
aims to provide the tools to simplify the ABM specification in a
MARL-compatible way - including features to encode dynamic par-
tial observability, agent utility functions, heterogeneity in agent
preferences or types, and constraints on the order in which agents
can act (e.g. Stackelberg games, or more complex turn-taking envi-
ronments). In this paper, we present the main features of Phantom
and their design rationale.
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1 INTRODUCTION
Agent based modeling (ABM) is a paradigm to model complex
systems in a bottoms-up manner by specifying the behavior of
autonomous decision-making components in the system (or agents);
and allowing the system dynamics to emerge from their interactions.
Drawing upon their real-world counterparts they seek to model,
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agents assess the state of the world and make decisions that will
affect the rest of the system inducing the emergence of non-trivial
phenomena.

Recent advances in the field of Reinforcement Learning (RL) have
brought another dimension to the study of complex multi-agent sys-
tems with the introduction of an autonomous learning component
to the ABM paradigm. The Multi-Agent Reinforcement Learning
(MARL) research community seeks to study the equilibrium of such
non-stationary environments where multiple agents learn at the
same time, by playing against or with each other.

Despite being complementary, these two fields of research have
progressed in parallel. Most Agent-Based Modeling frameworks
are not RL-native, in that they do not offer concepts and interfaces
that are compatible with the use of MARL to learn agent behaviors
in a specified ABM. We propose Phantom, a RL-driven framework
for agent-based modeling of complex multi-agent systems to bridge
the gap between ABM and MARL.

Phantom provides tools to specify the ABM in MARL-compatible
terms - including features to encode dynamic partial observability,
agent utility / reward functions, heterogeneity in agent preferences
or types, and constraints on the order in which agents can act.

In this paper [2], we elaborate on the architecture and design of
the Phantom framework and provide details about the main features
and their rationale1.

2 PRINCIPAL FEATURES
2.1 Partial Observability
The agents in an ABM interact by sharing information with each
other, that can affect their behavior and eventually lead to un-
covering interesting phenomena. However, in many real-world
applications not all the information shared across the system is
available for all the agents to consume. It was therefore crucial
for our framework to support partially observable environments
seamlessly and with the guarantee that there will be no information
leakage among the agents.

Network Model: In Phantom, we model the relationship between
agents in the system as a network or graph where each vertex /
node represents an agent and each edge represents an open line of
communication between two agents. One of our main desiderata
for the framework was the ability to support complex and dynamic
connectivity patterns between the agents. For this reason, we de-
cided to treat the network component as a first-class citizen of
1Source Code: https://github.com/jpmorganchase/Phantom
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the framework and allow the implementation of custom logic to
dynamically modify the network topology. The network can be
seen as the physical layer on which agents exchange information,
which means that two agents will only be able to communicate if
an edge exists between the two vertices representing them. This
property of the framework turns out to be particularly powerful to
express partial observability.

2.2 Heterogeneity and Scalability
Specifying the behaviors of agents in the system, and how they
evolve, is one of the crucial tasks in specifying an ABM for a domain
and often requires hand-coding of known strategies in classical
ABM approaches. While Phantom supports taking actions from a
hand-crafted (fixed, learnt from data, or evolving) policy, it is also
natively geared towards supporting MARL as an approach to train
the policies of the agents at scale.

Types and Supertypes: The framework provides a compact way
to specify different reward formulations and their associated agent
behavior. The agent reward function can be parameterized by a
vector of values (Type) driving the learnt behavior - which in effect,
implies that the agent class is associated with a space of possible
reward functions rather than a single fixed one. While the Type
construct is powerful, it is still difficult to scale for a large number
of agents. We argue that it is usually easier to consider families
of agents sharing the same average behavior or "persona", as it is
often named in the industry. More concretely, Phantom allows a
compact definition of a family of agents as a distribution over the
Type parameter space - also referred to as Supertype [16].

Shared Policy: The framework also offers a built-in implementa-
tion of the Shared Policy learning technique [16], that can easily be
configured via the framework’s API. Phantom automatically aug-
ments the observation space of an agent with its Type parameters
for each episode, making it seamless to train policies that generalize
across the Supertype’s behavior space. It also allows the agents from
the same family to share a single policy, considerably limiting the
number of models to train.

2.3 Complex Environments
We build upon the standard Open-AI Gym [3] paradigm where a
learning agent interacts in discrete time with the rest of the system
via the intermediary of a centralized environment. The multi-agent
setting adds a certain level of complexity to the environment com-
ponent which now plays the role of orchestrator of the simulation
in charge of deciding the order sequence in which the agents act.

Turn-based environment: With multiple agents at play, the com-
plexity of the orchestration logic can rapidly increase making it
harder to design complex problems. To alleviate this, Phantom
provides a simple and modular way to implement complicated se-
quences of stages where only a subset of the agents act. It uses the
Finite State Machine formalism to define the order in which the
agents are required to execute their actions in the environment.

3 RELATEDWORK
Despite having been around since the 70’s [14], the notion of Agent
Based modeling is an area that really started to grow in the 90’s
This sudden expansion can in part be attributed to the development
of multi-agents frameworks such as SWARM [9], NetLogo [15] and
others, making ABM more accessible to practitioners, reducing the
barriers to entry in the field. Since then we have seen numerous
applications of ABM in a variety of fields: flow simulation [? ],
markets simulation [10], organizational simulations [12].

These frameworks, built quite some time ago, have helped the
research community study complex systems but are not natively
geared towards leveraging MARL. NetLogo [15] for instance, built
on top of Java to allow scalability in the number of agents requires
a certain level of engineering skills to master making it less acces-
sible to the AI research community. Although the framework was
extended to include basic learning modules [8], it remains ad-hoc
and does not natively supports state of the art MARL techniques.

In most recent years, we have seen an increase in the develop-
ment of RL-frameworks designed for fast code iteration and rapid
experimentation. In 2018, TF-Agents was created as an additional
module to the TensorFlow framework to "make implementing, de-
ploying, and testing new Bandits and RL algorithms easier" [5]. The
concept of agent is introduced as a core element of the module but
the design of complex multi-agent environments and all its sub-
tleties remains at the charge of the developer. Other native ABM
frameworks like ABIDES [4] were further extended to support RL
[1].

MARL frameworks such asWarpDrive [6] andMAVA [11] are de-
signed to enable easier and more efficient implementation of MARL
algorithms. The former innovates by focusing on performance with
the use of GPU and their parallelization power.MAVA also proposes
a new distributed framework for multi-agent. Like Phantom, MAVA
offers the options to specify network configuration to model the
agents communication, however unlike in Phantom the network
configuration remains fairly basic and stays static throughout the
simulation and therefore does not allow the study of systems with
stochastic connectivity.

Finally, Abmarl [13] has a similar objective to ours: to provide
a library to build Agent-Based Simulations and train the agents
using MARL. They integrate with OpenSpiel [7] to simulate games
and provide their own implementation for GridWorld simulations.
Phantom on the other hand does not focus on specific types of
environments, but instead provides generic features to encode a
variety of environments.

4 CONCLUSION
In this paper, we introduced a new framework, Phantom, that lever-
ages the power of MARL to automatically learn multiple agent
behaviors or policies, evolving in complex systems. Our frame-
work provides the necessary tools to specify the ABM in MARL-
compatible terms - including features to encode dynamic partial
observability, agent utility / reward functions, heterogeneity in
agent preferences (or types), and constraints on the order in which
agents can act. Our hope is that Phantom enables the ABM com-
munity to conveniently leverage the power of MARL algorithms to
learn complex and realistic agent behaviors at scale.
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This paper was prepared for informational purposes by the Artifi-
cial Intelligence Research group of JPMorgan Chase & Co and its
affiliates (“J.P. Morgan”), and is not a product of the Research De-
partment of J.P. Morgan. J.P. Morgan makes no representation and
warranty whatsoever and disclaims all liability, for the complete-
ness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or invest-
ment advice, or a recommendation, offer or solicitation for the
purchase or sale of any security, financial instrument, financial
product or service, or to be used in any way for evaluating the
merits of participating in any transaction, and shall not constitute
a solicitation under any jurisdiction or to any person, if such solici-
tation under such jurisdiction or to such person would be unlawful.
© 2023 JPMorgan Chase & Co. All rights reserved.
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