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ABSTRACT
Opinions determine individuals’ attitudes and fundamentally in-
fluence collective decisions in societies. As a result, understanding
the processes leading to the dynamic formation of opinions is a
key research topic across multiple disciplines. Opinion dynamics
has been simulated through several computational models where
homogeneous agents are assumed to interact over networks. Often,
models assume that agents with opposing viewpoints converge
in opinion when interacting with each other. This is at odds with
evidence showing that individuals can also become further polar-
ized when interacting with individuals having opposing viewpoints.
In this paper, we study an opinion dynamics model where both
converging and polarizing nodes co-exist in a population. Through
simulations on several graph families we aim at understanding
i) how radicalization depends on different combinations of such
type of nodes and ii) how placing polarizing/converging agents
in specific network locations impacts opinion radicalization. We
observe that there is an optimal fraction of polarizing agents that
minimizes radicalization. Furthermore, we observe that placing
polarizing nodes on specific network positions can strongly affect
radicalization: assigning high-degree nodes as polarizing results
in lower radicalization as compared to random assignment. Our
results indicate that considering heterogeneous agents in what con-
cerns their reaction to opposing viewpoints is fundamental to fully
grasp the role of social networks in sustaining radical opinions.
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1 INTRODUCTION
People’s social behaviour, and the possibility of reaching political
compromises, depend on individuals’ opinions and the processes
that impact them over time. As a result, developing quantitative
models to describe dynamics of opinion formation is an important
task which received the attention of multiple disciplines such as
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sociology, political science, computer science or physics [4, 8, 10, 12,
14, 15]. While opinion dynamics has been an active research field
for long time [6, 7], the current prevalence of online social media
and the availability of large-scale data on individuals’ viewpoints
has renewed interest in the subject.

To effectively model the processes of opinion formation, it is
important to consider both individual characteristics of agents and
the structure of the social network through which interactions are
presumed to take place. Theoretically, it is often relevant to under-
stand whether the population being modeled achieves consensus, a
polarized state or fragmentation depending on assumptions about
social networks’ topology, individuals’ susceptibility to social in-
fluence or even their intrinsic preferences. Consensus represents a
situation where all the opinions within the population have con-
verged to a single state, whereas polarization typical refers to the
co-existence of different opinions (usually characterised by two
symmetric peaks about the neutral opinion). Fragmentation, in
turn, occurs when one observes a random distribution in the final
opinions. On top of characterizing how opinions distribute, it is
often relevant to measure how radical opinions are. The absolute
value of the opinion, in one dimensional opinion spaces, denotes
the strength of alignment with the issue considered, and is often
used as a measure of opinion radicalization.

The final distribution of opinions can depend on competing
properties of the topics of interest [15] or the characteristics of the
agents holding the opinions.When exposed to opposing viewpoints,
agents can either be easily convinced and converge to the opposing
viewpoint (Converging nodes); or, conversely, they can further
reinforce their own viewpoint, thereby becoming more radical in
supporting their opinion (Polarizing nodes). Most of previous mod-
els only consider converging nodes within the population. There is
recent evidence that populations also contain polarizing agents, par-
ticularly in the context of online social network interactions [1, 11].
Some recent works point out that introducing polarizing agents
within the population has a strong influence on the dynamics of
polarization [5, 13]. It is thus necessary to include the converging
or polarizing property of the agents when simulating the opinions
through a model which takes social influence into account.

Here we extend previous models and study the impacts on opin-
ion dynamics of considering both converging and polarizing nodes.

2 MODEL
In our model, each agent 𝑖 ∈ {1, 2, ..𝑁 } is located on an undirected
Graph 𝐺 (𝑉 , 𝐸), where 𝑉 denotes the set of nodes and 𝐸 ⊆ 𝑉 ×𝑉
the set of edges. |𝑉 | = 𝑁 denotes the number of agents in the
population. Opinions are considered real valued variables and each
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Figure 1: Radicalization level at equilibrium for different
fractions of polarizing nodes (𝜌) with polarizing nodes placed
at random (blue), in high-connected positions (orange) or
low-connected positions (green). Each point corresponds to
an average over 20 runs, each with a different instance of a
Barabási Albert networkwith𝑁 = 1000 nodeswith an average
degree of ⟨𝑘⟩ = 4. Radicalization is minimised when the
polarizing agents are placed on highly connected positions.
Other parameters considered: 𝛼 = 0.1, 𝛾 = 0.99, 𝛽 = 0.8.

agent 𝑖 is characterized by an opinion 𝑥𝑖 , 𝑥𝑖 ∈ (−∞,∞), with the
absolute value of the opinion denoting the strength of alignment
and the sign of the opinion indicating whether one is in favor or
against the matter which the opinion is considered to represent. The
opinion of each node varies iteratively according to the equation:

𝑥𝑡+1𝑖 = 𝛾𝑥𝑡𝑖 + 𝛼
( 𝑁∑︁
𝑗=1

𝐴𝑖 𝑗 tanh(𝛽𝑥𝑡𝑗 (𝜎𝑖𝜎 𝑗 )
𝜆)
)
/𝐾𝑖 , (1)

where 𝜎𝑖 , 𝜎 𝑗 denote the sign of the opinion of node 𝑖 and 𝑗 , 𝐾𝑖
denotes the degree of node 𝑖 and 𝑁 is the total number of nodes. 𝑥𝑡

𝑖
stands for the opinion of agent 𝑖 at time 𝑡 and 𝐴𝑖 𝑗 are the elements
of the adjacency matrix of the social network on which the agents
are assumed to interact: 𝐴𝑖 𝑗 = 1 if agents 𝑖 and 𝑗 are connected and
𝐴𝑖 𝑗 = 0 otherwise. 𝛾 controls how much the update of an opinion
depends on its previous values and can be loosely interpreted as
the decay term and is considered in the range 0 < 𝛾 < 1. In the
absence of social reinforcement (𝛼 = 0), the opinion of each node
decays to the neutral stance (𝑥𝑖 = 0, ∀𝑖). More details on similar
opinion dynamics models can be found in [2, 3, 9, 13].

The radicalization levels of individuals is given by their absolute
opinion value (|𝑥𝑖 |); radicalization of the whole population is de-
fined as the modulus of the average of the opinion: 𝑅 =

∑𝑁
𝑗=1 |

𝑥 𝑗

𝑁
|.

Radicalization is estimated numerically after iterating the opinions
corresponding to each node, which are initiated uniformly between
the interval [ −1, 1], according to Equation 1 until convergence.

For the numerical simulations, we consider different families of
Random networks: Barabási-Albert networks (Figure 1) and Watts-
Strogatz networks (Figure 2).

3 RESULTS
The presence of polarizing and converging agents in the population
alters the dynamics and the final distribution of opinions, which in
turn affects the average levels of radicalization observed. In Figure
1 we can see that the presence of a certain fraction of polarizing
nodes minimises radicalization. It is also observed that when the

Figure 2: Minimum value of radicalization forWatts-Strogatz
networks with varying probabilities of rewiring 𝑝. Each point
is an average over 20 runs, and the shaded area is the standard
deviation over runs. Radicalization is higher if polarizing
nodes are assorted in the network. As the probability of re-
connection increases, the distinction between the assortment
and randomised distribution of nodes almost vanishes. Other
parameters considered: 𝑁 = 200, ⟨𝑘⟩ = 4

polarizing nodes are placed on highly connected positions, the
radicalization is more effectively minimised than random placement
of the polarizing agents. The radicalization is relatively higher when
the polarizing agents are situated on the least connected positions
as compared to other settings considered. The numerical results
in Figure 1 have been obtained for the case of a specific network
topology (scale-free Barabási-Albert).

In Figure 2, we explore another well-known class of networks,
namely Watts-Strogatz (WS) networks. These networks are param-
eterized by a probability of re-connection parameter (𝑝): Higher
the value of 𝑝 , lower the clustering coefficient in the network and
the lower the average path length [16]. Besides allowing to test
the impact of these two network properties on radicalization, WS
networks help to test the role of assortment, i.e., the likelihood that
nodes from the same class (either polarizing or converging) are
closer in the network. We observe from Figure 2 that assortment
has a significant influence on the dynamics considered and hence
also the final radicalization. We also note that, as 𝑝 is increased, the
difference between random placement and assortment decreases as,
because of high rewiring, each node becomes structurally similar.

4 CONCLUSION
Recent data indicates that certain individuals are likely to radical-
ize further when interacting with opposing viewpoints (i.e., are
polarizing agents), leading to the so-called backfire effect [1, 11].
Here we develop a new model to simulate the effect of both con-
verging and polarizing agents within a population. We observe
that an intermediate fraction of polarizing nodes (𝜌∗) minimises
radicalization. The distribution of polarizing nodes on the network
matters when minimising radicalization: when polarizing agents
are situated on highly connected positions the radicalization is
more effectively minimised. We also observe that radicalization is
higher if polarizing nodes are assorted in the network.
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