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ABSTRACT
Opinion diffusion is a crucial phenomenon in social networks, often
underlying the way in which a collective of agents develops a
consensus on relevant decisions. The voter model is a well-known
theoretical model to study opinion spreading in social networks
and structured populations. Its simplest version assumes that an
updating agent will adopt the opinion of a neighboring agent chosen
at random. The model allows to study, for example, the probability
that a certain opinion will fixate into a consensus opinion, as well
as the expected time it takes for a consensus opinion to emerge.

Standard voter models are oblivious to the opinions held by the
agents involved in the opinion adoption process. We propose and
study a context-dependent opinion spreading process on an arbi-
trary social graph, in which the probability that an agent abandons
opinion 𝑎 in favor of opinion 𝑏 depends on both 𝑎 and 𝑏. We discuss
the relation of the model with existing voter models and then pro-
ceed to derive theoretical results for both the fixation probability
and the expected consensus time for two opinions on an 𝑛-clique
network topology, for both the synchronous and the asynchronous
update modes.
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1 INTRODUCTION
The voter model is a well-studied stochastic process defined on
a graph to model the spread of opinions (or genetic mutations,
beliefs, practices, etc.) in a population [6, 8]. In a voter model, each
node maintains a state, and when a node requires updating, it
will import its state from a randomly chosen neighbor. Updates
can be asynchronous, with one node activating per step [8], or
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synchronous, with all nodes activating in parallel [6]. While the
voter model on a graph has been introduced in the 1970s to model
opinion dynamics, the case of a complete graph is also very well-
known in population genetics where, in fact, it was introduced even
earlier, to study the spread of mutations in a population [5, 9].

Mathematically, among the main quantities of interest in the
study of voter models, there are the fixation probability of an
opinion—the probability of reaching a configuration in which each
node adopts the opinion—and the expected consensus (or absorption)
time—the expected number of steps before all nodes agree on an
opinion. Such quantities could in principle be computed for any
𝑛-node graph by defining a Markov chain on a set of 𝐶𝑛 configura-
tions, where 𝐶 is the number of opinions, but such an approach is
computationally infeasible even for moderate values of 𝑛. There-
fore, a theoretical analysis of a voter process will often focus on
obtaining upper and lower bounds for these quantities. Typically,
such an analysis will still draw heavily on the theory of Markov
chains [1, 7], although the synchronous and asynchronous variants
often require somewhat different approaches and tools.

A limitation of the voter process is that the dynamics is oblivious
to the states of both the agent𝑢 that is updating and of the neighbor
that𝑢 copies its state from, and that the copying always occurs. One
could easily imagine a situation (for example, in politics) where an
agent holding opinion 𝑎 is more willing to adopt the opinion 𝑏 of a
neighbor rather than to adopt opinion 𝑐 ; in general, the probability
of abandoning opinion 𝑎 in favor of opinion𝑏 might depend on both
𝑎 and 𝑏. This motivates the study of biased voter models [2–4, 10]
and in particular motivates us to introduce a voter model with an
opinion adoption probability that depends on the context, i.e., on
the opinions of both agents involved in an opinion spreading step.

2 MODEL FORMULATION
Notation. For a natural number 𝑘 , let [𝑘] = {0, 1, 2, . . . , 𝑘 − 1}. If

𝐺 = (𝑉 , 𝐸) is a graph, we write 𝑁 (𝑢) for the set of neighbors of
node 𝑢 in 𝐺 . We write 𝑑𝑢 for the degree of node 𝑢.

Model. We define an opinion dynamics model on networks. The
parameters of the model are: i) an underlying topology, given by
a graph 𝐺 on 𝑛 nodes, with symmetric adjacency matrix 𝐴 =

(𝑎𝑢𝑣)𝑢,𝑣∈[𝑛] ; ii) a number of opinions (or colors) 𝐶 ≥ 2; iii) an opin-
ion acceptance matrix (𝛼𝑐,𝑐′ )𝑐,𝑐′∈[𝐶 ] . The initial opinion of each
agent (node) 𝑢 is encoded by some 𝑥 (0)𝑢 ∈ [𝐶].
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Table 1: Results in the unbiased case (𝛼01 = 𝛼10 = 𝛼).

Schedule Topology Fixation probability (of 1) Reference Expected consensus time Reference

Asynchronous Arbitrary
∑
𝑢 𝑑𝑢𝑥

(0)
𝑢 /

∑
𝑢 𝑑𝑢 [10] 𝑇 avoter/𝛼 This paper

Asynchronous Clique 𝑘/𝑛 [5, 10] 𝑛2ℎ(𝑘/𝑛)/𝛼 + O(𝑛/𝛼) This paper
Synchronous Arbitrary

∑
𝑢 𝑑𝑢𝑥

(0)
𝑢 /

∑
𝑢 𝑑𝑢 This paper O(𝛽𝑛 𝑇 hit) This paper

Notes: Here 𝑘 =
∑
𝑢 𝑥
(0)
𝑢 ; 𝛽𝑛 is either O(1) or O(ln𝑛) , depending on 𝛼 ; and ℎ (𝑝 ) = −𝑝 ln𝑝 − (1 − 𝑝 ) ln(1 − 𝑝 ) .

Table 2: Results in the biased case (𝛼01 < 𝛼10; 𝑟 = 𝛼01/𝛼10).

Schedule Topology Fixation probability (of 1) Reference Expected consensus time Reference

Asynchronous Clique (1 − 𝑟−𝑘 )/(1 − 𝑟−𝑛) This paper Θ(𝑛 log𝑛) (∗) This paper
Synchronous Clique 1 −𝑂 (𝑛−𝑐 ) (∗∗) [3] 𝑂 (log𝑛) (∗∗) [3]
Synchronous Clique ≤ 𝑘/𝑛 This paper ≤ 𝑛/(𝛼10 − 𝛼01) This paper

Notes: (∗) universal upper bound and existential lower bound; (∗∗) assumes 𝑘 = Ω (log𝑛) nodes with initial opinion 1 and 𝑟 ≥ 1 + 𝜖 , for constant 𝜖 > 0.

For any node 𝑢 ∈ [𝑛], we define an update process Update(𝑢)
consisting of the following steps:

(1) Sample: Sample a neighbor 𝑣 of 𝑢 uniformly at random, i.e.,
according to the distribution (𝑎𝑢1/𝑑𝑢 , . . . , 𝑎𝑢𝑛/𝑑𝑢 ) where
𝑎𝑢𝑣 = 1 if 𝑢 and 𝑣 are adjacent, 𝑎𝑢𝑣 = 0 otherwise. Here
𝑑𝑢 = |𝑁 (𝑢) | = ∑

𝑣∈[𝑛] 𝑎𝑢𝑣 is the degree of node 𝑢.
(2) Compare: Compare 𝑢’s opinion 𝑐 = 𝑥𝑢 with 𝑣 ’s opinion

𝑐′ = 𝑥𝑣 .
(3) Accept/reject: With probability 𝛼𝑐,𝑐′ , set 𝑥𝑢 ← 𝑥𝑣 ; in this

case we say 𝑢 accepts 𝑣 ’s opinion. Otherwise, we say 𝑢 rejects
𝑣 ’s opinion.

We consider two variants of the model, differing in how the up-
dates are scheduled. In one iteration of the synchronous variant, each
node 𝑢 ∈ [𝑛] applies Update(𝑢) in parallel. In one iteration of the
asynchronous variant, 𝑢 ∈ [𝑛] is sampled at random and Update(𝑢)
is applied. We denote by 𝑥

(𝑡 )
𝑢 the random variable encoding the

opinion of node 𝑢 after 𝑡 iterations of either the synchronous or
the asynchronous dynamics (depending on the context).

The acceptance probabilities 𝛼𝑐,𝑐′ are parameters of the model.
We note that parameters 𝛼𝑐,𝑐′ with 𝑐 = 𝑐′ are irrelevant for the
dynamics, since a node sampling a neighbor of identical opinion
will not change opinion, irrespective of whether it accepts the
neighbor’s opinion or not. Hence, to specify the opinion acceptance
matrix 𝐶 (𝐶 − 1) parameters are sufficient; we can assume that the
diagonal entries equal, say, 1. In particular, when𝐶 = 2 it is enough
to specify 𝛼01 and 𝛼10. When 𝛼01 = 𝛼10 = 1, the model boils down
to the standard voter model [6, 8].

In the rest of this work we assume𝐶 = 2. In this case, we say that
the model is unbiased if the opinion acceptance matrix is symmetric,
i.e., 𝛼01 = 𝛼10, and biased otherwise.

Quantities of interest. The fixation probability of opinion 1 is the
probability that there exists an iteration 𝑡 such that 𝑥 (𝑡 )𝑢 = 1 for all
𝑢 ∈ [𝑛]. The consensus time is the index of the first iteration 𝑡 such
that 𝑥 (𝑡 )𝑢 = 𝑥

(𝑡 )
𝑣 for all 𝑢, 𝑣 ∈ [𝑛].

3 OUR CONTRIBUTION
We define and study extensions of the voter model that allow the
opinion adoption probability to depend on the pair of opinions
involved in an opinion spreading step. We consider both an asyn-
chronous variant and a synchronous variant of a context-dependent
voter model, with two opinions, 0 and 1. We study both the fixa-
tion probabilities and the expected consensus time. Our results are
reported in Tables 1 and 2 and can be summarized as follows:
• Unbiased / asynchronous: we relate the expected consensus
time of the process to that of a standard asynchronous voter
model on arbitrary topologies; in the case of the 𝑛-clique,
we get explicit, tight bounds.
• Unbiased / synchronous: we derive an exact value of the fixa-
tion probability, and provide an upper bound on the expected
consensus time that depends on the maximum expected hit-
ting time of the graph.
• Biased / asynchronous: on the 𝑛-clique, we prove that the
fixation probability is (1 − 𝑟−𝑘 )/(1 − 𝑟−𝑛) where 𝑘 is the
number of agents initially holding opinion 1 and 𝑟 = 𝛼01/𝛼10.
We also prove that the expected consensus time on the 𝑛-
clique is O(𝑛 log𝑛) for all values of 𝑘 and Ω(𝑛 log𝑛) when
𝑘 = (𝑛 + 1)/2 (for odd 𝑛).
• Biased / synchronous: on the 𝑛-clique, the fixation probability
is at least 𝑘/𝑛 if 𝛼01 > 𝛼10, where 𝑘 is the number of agents
initially holding opinion 1. We prove that the expected con-
sensus time is at most 𝑛/(𝛼01 − 𝛼10) in that case.

4 OPEN PROBLEMS
Due to the mathematical complexity of the model, in this paper
we focus on the 𝑛-clique topology and on the case of two opin-
ions. A generalization of the results to general network topologies
seems obviously interesting but challenging. The case of more than
two opinions is also wide open and would be particularly inter-
esting already with three opinions, since one could imagine some
rock-paper-scissors like dynamics if, say, the adoption probabilities
satisfy 𝛼01 > 𝛼10, 𝛼12 > 𝛼21, 𝛼20 > 𝛼02, so that opinion 0 is stronger
than 1 but weaker than 2 and so on, which could in principle lead
to a significantly larger expected consensus time.
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