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ABSTRACT
We consider the problem of effectively finding a subset of reps

(representatives) from a large group of agents belonging to a metric

space while considering three distinct notions of fairness. First, each

agent should be close to a rep (while precisely how close depends

on population densities). Second, reps should satisfy a given social

equity constraint specifying the number of representatives with

each property value. Finally, reps should be similar, in their property

value, to that of the community of agents whom they represent.
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1 INTRODUCTION
Given a large set of agents (or people, data items, etc.) a common

problem is to find a subset of representatives (or reps, for short).
Numerous techniques have been developed, for different settings

of the agents, and a variety of requirements that the subset should

satisfy. In this paper, we make two main assumptions about the

set of agents. First, agents belong to a metric space, e.g., they may

have a geographic location, or may be tuples in a database over

which a standard distance metric is defined. In addition, agents have

a (possibly sensitive) property, such as ethnicity, gender identity,

category, price range. Our goal is to find a set of representatives,

in a manner that is fair in terms of the distance of agents to their

closest rep, and is socially equitable w.r.t. to the given property.

Example 1.1. Suppose that the state of California wishes to

establish a citizens committee to discuss a pressing issue plaguing

society (e.g., community violence, environmental hazards). The

committee composition could be established via a votingmechanism

or by making a call for volunteers. However, to well represent the

entire population body, it is reasonable to require the committee to

satisfy three distinct notions of fairness.

The first notion is distance-based fairness. Citizens in all areas

should have a rep that is located close by, i.e., it is reasonable

to expect citizens in densely populated areas to have a rep quite

close by, while citizens in sparsely populated areas may have a

rep somewhat farther off. Second, we may desire the satisfaction
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of a social equity constraint. Reps should not only represent all

geographic areas, but also all social circles. Thus, we may require

the committee to have a given number of reps of different ethnicities

or gender identities. Finally, it is desirable that communities have a

rep that is similar socially (e.g., ethnically) to their own composition.

Thus, it is not sufficient for a social equity constraint to ensure the

inclusion of Asian American citizens. Fairness requires that the rep

chosen for the Chinatown neighborhood of Los Angeles should

be Asian American (as Chinatown is over 70% Asian American).

Finding a set of reps that achieves all three notions of fairness is

challenging, raising new problems, and is studied in this paper. □

There has been extensive previous work on facility location [10,

19], including recent focus on strategy-proof mechanisms for the

facility location problem, e.g., [8, 16, 17, 21, 23]. While traditionally

facility location often seeks locations that minimize the maximum

or sum of distances of agents to facilities, in this paper we focus

specifically on fair facility location [13, 18], which considers the

density or sparsity of areas surrounding agents when determining

how close facilities must be to agents. Our work extends this line

of research to consider social equity constraints.

Our main goal is to choose a set of reps from among a larger set

of agents or items. This problem has been studied extensively in a

variety of settings, such as multi-winner elections, and the axioms

that election rules should satisfy [1, 7, 11], strategic voting [15,

20, 22], and balancing the load size of districts [5, 9]. Work on

choosing diverse or representative committees, given candidates

with sensitive properties [2, 4, 6] considers rankings of candidates

and does not utilize a more general distance function. Previous

work also does not attempt to ensure that reps chosen are similar

in their property value to the communities they represent. Also

related is previous work on fair clustering, e.g., [3, 12, 14]. This

problem differs significantly from that on hand as our requirements

are on the reps and not the set of agents they represent.

2 CONTRIBUTIONS
In the fair facility location problem [13] we are given a set 𝑃 of 𝑛

points in a metric space (𝑋,𝑑). For a point 𝑥 ∈ 𝑃 , and a value 𝑘 , the

neighborhood radius of 𝑥 , denoted 𝑁𝑅𝑘 (𝑥), is the minimum radius

𝑟 such that at least 𝑛/𝑘 points in 𝑃 are within distance 𝑟 of 𝑥 . Let

𝑆 ⊆ 𝑃 be a set of size 𝑘 . We use 𝑑 (𝑥, 𝑆) to denote the distance of 𝑥

from the closest point in 𝑆 . The distance ratio for 𝑆 , 𝑃 and𝑘 is defined

as 𝛼𝑘 (𝑃, 𝑆) = max𝑥∈𝑃
𝑑 (𝑥,𝑆 )
𝑁𝑅𝑘 (𝑥 ) . The optimal distance ratio 𝛼∗

𝑘
(𝑃) is

simply the value for which 𝛼𝑘 (𝑃, 𝑆) is minimal, when considering

all 𝑆 ⊆ 𝑃 of size 𝑘 . A set 𝑆 is an optimal rep set if 𝛼𝑘 (𝑃, 𝑆) = 𝛼∗
𝑘
(𝑃).

Intuitively, an optimal rep set is a set in which the the worst ratio

of distance from a point 𝑥 to 𝑆 over the neighborhood radius of 𝑥

is minimized.
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Consider the set of points 𝑃0.

For all 𝑥 ∈ 𝑃 , 𝑁𝑅3 (𝑥) ≤ 2. Set 𝑆0
containing the middle point from

each cluster would be optimal

for 𝑘 = 3, and thus 𝛼∗
3
(𝑃) =

𝛼3 (𝑃, 𝑆) = 1/2, as each point has

a rep that is at distance at most

1/2 the size of its radius.
Now, a facility location algorithmA over a metric space (𝑋,𝑑) is

said to be 𝛼-fair [13] if, for all 𝑃 ⊆ 𝑋 and for all 1 ≤ 𝑘 ≤ |𝑃 |, it holds
that A(𝑃, 𝑘) returns a set 𝑆 ⊆ 𝑃 of size 𝑘 such that 𝛼𝑘 (𝑃, 𝑆) ≤ 𝛼 .

We are interested in choosing reps that satisfy the same fairness

principle introduced by the fair facility location problem. In addition,

we assume that points are associated with a property (such as race,

gender, socioeconomic level). Our goal is not only to solve the

fair facility location problem, but to ensure that the resulting set

𝑆 preserves a given constraint of social equity, i.e., has sufficiently

many points with different property values.

Let 𝐶 be a set of values, and let 𝑣 : 𝑃 → 𝐶 be a function that

associates each point in 𝑃 with a value. Let E : 𝐶 → N be a function

associating each value 𝑐 ∈ 𝐶 with a natural number, called an equity
constraint. Intuitively, E(𝑐) indicates the number of reps that should

be chosen with value 𝑐 . We use 𝑘 to denote the total number of

reps that E requires, i.e.,

∑
𝑐∈𝐶 E(𝑐). We say that a set 𝑆 ⊆ 𝑃 is

E-equitable (or simply equitable for short) if, for all 𝑐 ∈ 𝐶 it holds

that |𝑆𝑐 | = E(𝑐), where 𝑆𝑐 is the subset of points in 𝑆 with value 𝑐 .

For example, 𝑆0 is E-equitable only if E requires one red and two

blue points.

We extend the definition of a neighborhood radius to consider

E. The 𝑓 -feasible neighborhood radius of a point 𝑥 ∈ 𝑃 , denoted

𝑁𝑅𝑓 ,E (𝑥), is the minimum radius 𝑟 s.t. there are at least 𝑛/𝑘 points

in 𝑃 within distance 𝑟 of 𝑥 and there are at least 𝑓 points with

different values 𝑐 (with E(𝑐) > 0) within distance 𝑟 of 𝑥 . Observe

that 𝑁𝑅
0,E (𝑥) = 𝑁𝑅𝑘 (𝑥). Also, 𝑁𝑅

1,E (𝑥) = 𝑁𝑅𝑘 (𝑥) if E(𝑐) > 0

for all 𝑐 , as any radius will satisfy the second requirement, since it

will contain the point 𝑥 itself.

Given the notion of an 𝑓 -feasible neighborhood radius, we define

the 𝑓 -feasible distance ratio 𝛼 𝑓 ,E (𝑃, 𝑆), and the optimal 𝑓 -feasible
equitable distance ratio 𝛼∗

𝑓 ,E (𝑃) analogously to 𝛼𝑘 (𝑃, 𝑆) and 𝛼𝑘 (𝑃).
Now, a facility location algorithm A over a metric space (𝑋,𝑑)
is (𝑓 , 𝛼)-fair if, for all 𝑃 ⊆ 𝑋 and for all equity constraints E, it
holds that A(𝑃, E) returns an E-equitable set 𝑆 ⊆ 𝑃 such that

𝛼 𝑓 ,E (𝑃, 𝑆) ≤ 𝛼 . We show the following results, which depend on

the choice of 𝑓 .

Theorem 2.1. Let 𝑛 = |{𝑐 | E(𝑐) > 0}| and 0 < 𝑓 < 𝑛:
(1) determining whether 𝛼∗

0,E (𝑃) ≤ 2 is NP-complete;
(2) 𝛼∗

0,E (𝑃) is not bound from above;
(3) there exists an (𝑛, 3)-fair polynomial algorithm;
(4) there exist 𝑃 and E for which 𝛼∗

𝑛,E (𝑃) ≥ 3;
(5) determining whether 𝛼∗

𝑓 ,E (𝑃) ≤ 3 is NP-complete.

Note that Item 4 implies that the algorithm of Item 3 is the best

that can be defined. Although Item 5 states hardness for 0 < 𝑓 < 𝑛,

a polynomial algorithm can be devised that returns a set of reps

which is, in practice, significantly closer to the points that the

algorithm of Item 3. Details are omitted due space considerations.

Until now, we have assumed that we have a single set 𝑃 , out of

which we must choose a set of E-equitable reps. We now consider a

different setting, in which we have multiple disjoint sets 𝑃1, . . . , 𝑃𝑚

(which can be thought of as communities), and we must choose

one rep from each set such that (1) the set of reps chosen satisfy an

equity constraint and (2) the rep 𝑠𝑖 for 𝑃𝑖 well represents 𝑃𝑖 , i.e., has a
popular property value from 𝑃𝑖 . Note that a solution to this problem

can be used as a secondary step after finding an E-equitable set of
reps 𝑆 for 𝑃 . Such reps can be seen as dividing 𝑃 into communities
𝑃𝑖 , where a point is in 𝑃𝑖 if it is closest to rep 𝑠𝑖 . We are then

interested in determining how similar a rep is to its community,

and to indeed replace reps with other community points in amanner

that increases representativeness while preserving equity.

To demonstrate this issue, consider sets of points 𝑃1, 𝑃2 where: 𝑃1

has 𝑛/2 points, all but one with property value 𝑐𝑟 , and one point 𝑥𝑏
has value 𝑐𝑏 and 𝑃2 has 𝑛/2 points, all but one with property value

𝑐𝑏 , and one point 𝑥𝑟 has value 𝑐𝑟 . Consider the equity constraint

E(𝑐𝑟 ) = E(𝑐𝑏 ) = 1. Now the set of reps 𝑆 = {𝑥𝑏 , 𝑥𝑟 } is E-equitable.
However, every other E-equitable set has reps that are much more

representative of the points in their communities.

We now formalize the notion of representativeness for a set of

reps. Let 𝑥 ∈ 𝑃𝑖 be a point. Let 𝑘𝑖𝑥 be the number of points in

𝑃𝑖 with property value 𝑣 (𝑥) and let 𝑘𝑖∗ be the number of points

in 𝑃𝑖 with the most common property value, i.e., 𝑘𝑖𝑥 = |𝑃𝑖
𝑣 (𝑥 ) |,

𝑘𝑖∗ = max{|𝑃𝑖𝑐 | | 𝑐 ∈ 𝐶}. The representativeness index of 𝑥 , denoted

𝑅𝐼 (𝑥), is simply 𝑘𝑖𝑥/𝑘𝑖∗.
Now, given 𝑃1, . . . , 𝑃𝑚 and and equity constraint E s.t. we have∑
𝑐∈𝐶 E(𝑐) =𝑚, we say that a set of reps 𝑆 is an E-equitable set of

community reps if 𝑆 is E-equitable and contains precisely one point

from each 𝑃𝑖 . We say that 𝑆 is max-min optimally representative
(resp. max-sum optimally representative) if it is an E-equitable set
of community reps that maximizesmin𝑠𝑖 ∈𝑆 𝑅𝐼 (𝑠𝑖 ) (resp. maximizes∑
𝑠𝑖 ∈𝑆 𝑅𝐼 (𝑠𝑖 )).

Theorem 2.2. A max-min (max-sum) optimally representative
E-equitable set of community reps can be found in polynomial time.

As discussed earlier, a solution to the problem at hand can be

used as a second step after first solving the fair and equitable

facility location problem. In such a case, it is possible to find an

optimal set 𝑆 which is guaranteed to be (𝑛, 4)-fair. Thus, the cost
of a more representative set is a possibly somewhat larger ratio of

neighborhood size to distance from a rep.

3 CONCLUSION
We presented a new method to choose reps in a fair and socially

equitable manner by leveraging and extending previous work on

fair facility location. Our results are applicable when agents are in

a metric space and have special properties. Our theoretical results

carefully analyze the cost of equity. Due to space considerations, we

have omitted experimentation, however, the cost is reasonable in

practice. As future work, we intend to consider agents with multiple

properties, as well as a broader class of equity constraints. We will

also study strategy-proof mechanisms, when agents may lie about

their location and/or their property value. Finally, we will search

for ways in which load balance can be ensured, while still deriving

a fair and equitable result.
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