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ABSTRACT
In offline multi-agent reinforcement learning (RL), most existing
methods directly apply offline RL ingredients in the multi-agent
setting without fully leveraging the decomposable problem struc-
ture, leading to less satisfactory performance in complex tasks.
We present OMAC, a new offline multi-agent RL algorithm with
coupled value factorization. OMAC adopts a coupled value fac-
torization scheme that decomposes the global value function into
local and shared components, and also maintains the credit as-
signment consistency between the state-value and action-value
functions. Moreover, OMAC performs in-sample learning on the
decomposed local state-value functions, which implicitly conducts
max-Q operation at the local level while avoiding distributional
shift caused by evaluating out-of-distribution actions. Based on
the comprehensive evaluations of the offline multi-agent StarCraft
II micro-management tasks, we demonstrate the superior perfor-
mance of OMAC over existing offline multi-agent RL methods.
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1 INTRODUCTION
In most real-world scenarios, reliable simulators are not available
and it can be costly for online interaction with the real system.
The recently emerged offline RL methods provide another promis-
ing direction by training the RL agent with pre-collected offline
dataset without system interaction [1, 3, 4, 13]. Compared with of-
fline single-agent RL, offline multi-agent RL (MARL) is a relatively
underexplored area and considerably more complex [8, 11]. Under
the offline setting, evaluating value function outside data coverage
areas can produce falsely optimistic values, causing the issue of dis-
tributional shift [3].When adding themulti-agent consideration, the
joint action space grows exponentially with the number of agents,

∗Corresponding author.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

we need to consider regularizing multi-agent policy optimization
with respect to the data distribution. This can potentially lead to
over-conservative multi-agent policies due to extremely limited
feasible state-action space under data-related regularization.

Consequently, an effective offline MARL algorithm needs to not
only fully leverage the underlying multi-agent decomposable prob-
lem structure, but also organically incorporate offline data-related
regularization. Ideally, the data-related regularization should be
performed at the individual agent level to avoid the negative impact
of sparse data distribution at the joint space and enable producing a
more relaxed yet still valid regularization to prevent distributional
shift. Under this rationale, a natural choice is to decompose the
global value function as the combination of local value functions.
However, existing offline MARL algorithms that naively combine
the value decomposition framework with local-level offline RL
[8, 11] still suffer from several drawbacks. First, the value decom-
position scheme is not specifically designed for the offline setting.
Second, they may still suffer from instability issues caused by the
bootstrapping error accumulation. The instability of the local value
function will further propagate and negatively impact the learning
of the global value function.

To tackle above issues, we propose OMAC, a new offline multi-
agent RL algorithm with coupled value factorization. OMAC organ-
ically marries offline RL with a specially designed coupled multi-
agent value decomposition strategy. In addition to decomposing
global action-value function 𝑄𝑡𝑜𝑡 , OMAC also decomposes 𝑉𝑡𝑜𝑡
into local state-value functions 𝑉𝑖 and a shared component 𝑉𝑠ℎ𝑎𝑟𝑒 .
Moreover, OMAC poses an extra coupled credit assignment scheme
between state-value and action-value functions to enforce consis-
tency and a more regularized global-local relationship. Under this
factorization strategy, we can learn an upper expectile local state-
value function 𝑉𝑖 in a completely in-sample manner. It enables
separated learning of the local action-value function 𝑄𝑖 and the
policy 𝜋𝑖 , which improves the learning stability of both the local
and global action-value functions. We benchmark our method using
offline datasets of StarCraft Multi-Agent Challenge (SMAC) tasks
[10]. The results show that OMAC achieves state-of-the-art (SOTA)
performance compared with the competing baseline methods.

2 METHOD
For each agent, we define the local state-value function 𝑉𝑖 as the
optimal value of the local action-value function𝑄𝑖 . In particular, we
decompose the global state-value function into a linear combination
of local state-value functions 𝑉𝑖 (𝑜𝑖 ) with weight function 𝑤𝑣

𝑖
(𝒐),

as well as the shared component based on the full observation
𝑉𝑠ℎ𝑎𝑟𝑒 (𝒐). The global action-value function is further decomposed
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as the state-value function plus a linear combination of local ad-
vantages 𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ) −𝑉𝑖 (𝑜𝑖 , 𝑎𝑖 ) with weight function𝑤𝑞

𝑖
(𝒐, 𝒂):

𝑉𝑡𝑜𝑡 (𝒐) =
𝑛∑︁
𝑖=1

𝑤𝑣
𝑖 (𝒐)𝑉𝑖 (𝑜𝑖 ) +𝑉𝑠ℎ𝑎𝑟𝑒 (𝒐)

𝑄𝑡𝑜𝑡 (𝒐, 𝒂) = 𝑉𝑡𝑜𝑡 (𝒐) +
𝑛∑︁
𝑖=1

𝑤
𝑞

𝑖
(𝒐, 𝒂) (𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ) −𝑉𝑖 (𝑜𝑖 ))

𝑉𝑖 (𝑜𝑖 ) = max
𝑎𝑖

𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ), 𝑤𝑣
𝑖 ,𝑤

𝑞

𝑖
≥ 0, ∀𝑖 = 1, · · · , 𝑛 (1)

In Eq. ( 1), the globally shared information is partly captured in
the shared component of the state-value function 𝑉𝑠ℎ𝑎𝑟𝑒 (𝒐), which
is free of the joint actions and not affected by the OOD actions under
offline learning. The information sharing across agents and credit
assignment is captured inweight functions𝑤𝑣

𝑖
(𝒐) and𝑤𝑞

𝑖
(𝒐, 𝒂). The

local value functions𝑉𝑖 (𝑜𝑖 ) and𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ) are now only responsible
for local observation and action information. The shared and the
local information are separated, and agents can make decisions by
using local 𝑉𝑖 and 𝑄𝑖 at an individual level.

Ideally, the credit assignment on global state and action values
should be coupled and correlated. Thus, we further design a coupled
credit assignment scheme implemented with neural networks to
enforce such consistency, which also leads to a more regularized
relationship between𝑤𝑣 (𝒐) and𝑤𝑞 (𝒐, 𝒂):

ℎ𝑣 (𝒐) = 𝑓
(1)
𝑣 (𝒐), ℎ𝑞 (𝒐) = 𝑓

(1)
𝑞 (𝒐, 𝒂)

𝑤𝑣
𝑖 (𝒐) = |𝑓 (2)𝑣 (ℎ𝑣 (𝒐)) |

𝑤
𝑞

𝑖
(𝒐, 𝒂) = |𝑓 (2)𝑞 (concat(ℎ𝑣 (𝒐), ℎ𝑞 (𝒐, 𝒂)) |

(2)

where 𝑓
(1)
𝑣 , 𝑓 (2)𝑣 , 𝑓 (1)𝑞 , and 𝑓

(2)
𝑞 are hidden neural network lay-

ers. We take absolute values on the network outputs to ensure the
positivity condition of 𝑤𝑣 (𝒐) and 𝑤𝑞 (𝒐, 𝒂). It enforces a coupled
relationship between𝑤𝑣 (𝒐) and𝑤𝑞 (𝒐, 𝒂) by sharing the same ob-
servation encoding structure, which makes training on 𝑤𝑞 (𝒐, 𝒂)
can also update the parameters of 𝑤𝑣 (𝒐). This coupling relation-
ship allows more stable credit assignment between state and action
value functions on the same observation 𝒐. It can also improve data
efficiency during training, which is particularly important for the
offline setting since the size of the real-world dataset can be limited.

In the proposed coupled value factorization, the condition of
𝑉𝑖 (𝑜𝑖 ) = max

𝑎𝑖
𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ) needs to be forced. Directly implementing

this condition can be problematic under the offline setting, as it
could lead to queries on OOD actions, causing distributional shift
and overestimated value functions. To avoid this issue, one need to
instead consider the following condition:

𝑉𝑖 (𝑜𝑖 ) = max
𝑎𝑖 ∈A, s.t. 𝜋𝛽 (𝑎𝑖 |𝑜𝑖 )>0

𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ), (3)

where 𝜋𝛽 is the behavior policy of the offline dataset. Drawing
inspiration from offline RL algorithm IQL [2], we can implicitly
perform the above max-Q operation by leveraging the decomposed
state-value functions 𝑉𝑖 , while also avoiding explicitly learning
the behavior policy 𝜋𝛽 . This can be achieved by learning the local
state-value function 𝑉𝑖 (𝑜𝑖 ) as the upper expectile of target local
action-values 𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ) based on (𝑜𝑖 , 𝑎𝑖 ) samples from dataset D.
For each agent, its local state-value function 𝑉𝑖 (𝑜𝑖 ) is updated by

minimizing the following objective:

𝐿𝑉𝑖 = E(𝑜𝑖 ,𝑎𝑖 )∼D
[
𝐿𝜏2

(
𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ) −𝑉𝑖 (𝑜𝑖 )

) ]
, (4)

where 𝐿𝜏2 (𝑢) = |𝜏 − 1(𝑢 < 0) |𝑢2 denotes the expectile regression
and 𝜏 ∈ (0, 1).

With the estimated local state-value function𝑉𝑖 (𝑜𝑖 ), we can then
use it to update the global value functions 𝑉𝑡𝑜𝑡 and 𝑄𝑡𝑜𝑡 , which
are essentially parameterized by the shared state-value function
𝑉𝑠ℎ𝑎𝑟𝑒 (𝒐), local action-value function𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ), as well as the credit
assignment weight functions𝑤𝑣

𝑖
(𝒐) and𝑤𝑞

𝑖
(𝒐, 𝒂) as in Eq. (1). These

terms can be jointly learned by minimizing the following objective:

𝐿𝑄 = E(𝒐,𝒂,𝒐′ )∼D
[ (
𝑟 (𝒐, 𝒂) + 𝛾𝑉𝑡𝑜𝑡

(
𝒐′
)
−𝑄𝑡𝑜𝑡 (𝒐, 𝒂

)
)2] . (5)

With the learned local state and action value functions 𝑄𝑖 and
𝑉𝑖 , we can extract the local policies by maximizing the local ad-
vantage values with KL-divergence constraints to regularize the
policy to stay close to the behavior policy. It can be shown equiva-
lent to minimizing the following advantage-weighted regression
objective [7, 9] by enforcing the KKT condition:
𝐿𝜋𝑖 = E(𝑜𝑖 ,𝑎𝑖 )∼D [exp (𝛽 (𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ) −𝑉𝑖 (𝑜𝑖 ))) log𝜋𝑖 (𝑎𝑖 |𝑜𝑖 )] , (6)

where 𝛽 is a temperature parameter.

Dataset OMAC ICQ OMAR BCQ-MA CQL-MA
5m_vs_6m (good) 8.25±0.12 7.94±0.32 7.17±0.42 8.03±0.31 8.17±0.20
5m_vs_6m (medium) 8.04±0.42 7.77±0.30 7.08±0.51 7.58±0.10 7.78±0.10
5m_vs_6m (poor) 7.44±0.16 7.47±0.13 7.13±0.30 7.53±0.15 7.38±0.06
6h_vs_8z (good) 12.57±0.47 11.81±0.12 9.85±0.28 12.19±0.23 10.44±0.20
6h_vs_8z (medium) 12.17±0.52 11.56±0.34 10.81±0.21 11.77±0.36 11.59±0.35
6h_vs_8z (poor) 11.08±0.36 10.34±0.23 10.64±0.20 10.67±0.19 10.76±0.11
3s5z_vs_3s6z (good) 16.81±0.46 16.95±0.39 8.71±2.84 17.43±0.46 9.27±2.53
3s5z_vs_3s6z (medium) 14.47±1.11 12.55±0.53 5.58±1.77 13.99±0.62 5.08±1.45
3s5z_vs_3s6z (poor) 8.82±0.95 7.43±0.42 2.12±1.07 8.36±0.45 3.22±0.87
corridor (good) 15.21±1.06 15.55±1.13 6.74±0.69 15.24±1.21 5.22±0.81
corridor (medium) 12.37±0.51 11.30±1.57 7.26±0.71 10.82±0.92 7.04±0.66
corridor (poor) 5.68±0.65 4.25±0.17 4.05±0.86 4.37±0.57 3.89±0.89

Table 1: Average scores and standard deviations over 5 ran-
dom seeds on the offline SMAC tasks

3 EXPERIMENTS
We choose the StarCraft Multi-Agent Challenge (SMAC) benchmark
[10] as our testing environment. The offline SMAC dataset used
in this study is provided by [6]. The dataset is collected from the
trained MAPPO agent [12], and includes three quality levels: good,
medium, and poor. We consider 4 representative SMAC maps, in-
cluding 1 hard map (5m_vs_6m), and 3 super hard maps (6h_vs_8z,
3s5z_vs_3s6z, corridor).

We compare OMAC against four recent offline MARL algorithms:
ICQ [11], OMAR [8], multi-agent version of BCQ [1] and CQL [5],
namely BCQ-MA and CQL-MA. BCQ-MA and CQL-MA use a linear
weighted value decomposition structure for the multi-agent setting.
We report the mean and standard deviation of average returns for
the offline SMAC tasks in Table 1. The results show that OMAC
consistently outperforms all baselines and achieves state-of-the-art
performance in most maps. For the super hard SMAC map such
as 6h_vs_8z or corridor, the cooperative relationship of agents is
very complex and it is difficult to learn an accurate global value
function. Due to the couple value factorization, the global 𝑄𝑡𝑜𝑡 of
OMAC has a stronger expressive capability, which makes OMAC
have better performance than other baseline algorithms. Moreover,
both the local and global value functions in OMAC are completely
performed in an in-sample manner without the involvement of the
agent policies 𝜋𝑖 , which also leads to better offline performance.
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