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ABSTRACT
When designing interventions in public health, development, and
education, decision makers rely on social network data to target
a small number of people, capitalizing on peer effects and social
contagion to bring about the most welfare benefits to the popu-
lation. Developing new methods that are privacy-preserving for
network data collection and targeted interventions is critical for
designing sustainable public health and development interventions
on social networks. In a similar vein, social media platforms rely
on network data and information from past diffusions to organize
their ad campaign and improve the efficacy of targeted advertising.
Ensuring that these network operations do not violate users’ pri-
vacy is critical to the sustainability of social media platforms and
their ad economies. We study privacy guarantees for influence max-
imization algorithms when the social network is unknown, and the
inputs are samples of prior influence cascades that are collected at
random. Building on recent results that address seeding with costly
network information, our privacy-preserving algorithms introduce
randomization in the collected data or the algorithm output, and
can bound each node’s (or group of nodes’) privacy loss in deciding
whether or not their data should be included in the algorithm input.
We provide theoretical guarantees of the seeding performance with
a limited sample size subject to differential privacy budgets in both
central and local privacy regimes. Simulations on empirical network
datasets reveal the diminishing value of network information with
decreasing privacy budget in both regimes, as well as additional
nuances of post-processing in the local regime.
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1 INTRODUCTION
When designing interventions in public health, development, and
education decision-makers rely on social network data to target a
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small number of people, capitalizing on peer effects and social con-
tagion to bring about the most welfare benefits to the population
[2, 4, 6, 11, 24, 31, 43]. However, members of minority community
who contribute to social network data collection endure privacy
risks. This is especially important when engaging with vulnerable
populations to record sensitive or stigmatizing behavior, e.g., in
design of public health interventions among the homeless youth
for HIV and suicide prevention [41]. Developing new methods that
are privacy-preserving for network data collection and targeted
interventions is critical for designing sustainable public health and
development interventions on social networks. In a similar vein,
social media platforms rely on network data and information from
past diffusions to organize their ad campaign and improve the
efficacy of targeted advertising. Ensuring that these network opera-
tions do not violate users’ privacy is critical to the sustainability of
social media platforms and their ad economies. This is specially im-
portant in light of the vulnerabilities of minority groups in a social
network. For example, a few adversarial nodes can coordinate their
actions to move a web crawler towards or away from certain parts
of an online social network to compromise their privacy through a
re-identification attack [3].

Much of the past work on social network data privacy focuses on
identifiability of nodes from released graph data, with or without
additional information on node attributes and their neighborhoods
[35]. Classical anonymization techniques mask node attributes and
perturb, modify, randomize or aggregate the graph structure to pre-
vent re-identification of nodes within a confidence level — typically
achieving k-anonymity [1, 42, 44]. However, statistical disclosure
control of collected data requires safeguarding data donor’s pri-
vacy against adversarial attacks where common anonymization
techniques are shown to be vulnerable to various kinds of identi-
fication [5], linkage and cross-referencing [30, 39, 40], statistical
difference and re-identification attacks [25]. On the other hand
while edge sampling at the data collection can somewhat mitigate
the re-identification risk of nodes [17, 35], the seeded nodes can
reveal additional side information about who has contributed to
network data collection. For example, once a community leader
is chosen, his or her close contacts may suffer privacy leaks, even
though no social network data are published. Differential privacy
(DP)1 offers an alternative foundation by focusing on protecting
input data against revelations of algorithmic outputs [12] with ex-
tended applications to optimization problems [15, 29, 36, 38]. The

1Throughout this paper we use DP to signify any of the phrases “differentially
private", “differentially privately", and “differential privacy" with or without hyphen
between the words as appropriate by the language function that these words play in
the context that DP is used.
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influence maximization problem that we address in this paper is
a classic example of a cardinality-constrained, combinatorial opti-
mization on a graph with a monotone, submodular objective that
admits a tight (1 − 1/𝑒) approximation guarantee using the greedy
node selection algorithm [19–21]. However, the graph structure of
the input data has stunned the design of DP seeding algorithms.

2 MAIN RESULTS
We first elaborate on shortcomings of mainstream approaches to DP
analysis of graphs for seeding and use that to contextualize ourmain
contributions in proposing new DP definitions with privacy, utility,
and sample complexity guarantees for influence maximization.

A privacy notion for social network data collection and interven-
tion design. Influence maximization is a classical, NP-hard network
optimization problem, which selects 𝑘 nodes on a graph of size 𝑛
to maximize the expected spread size from seeding those 𝑘 nodes
under a randomized model of network diffusion. We focus on differ-
ential privacy guarantees for influence maximization when social
network is unknown and influential nodes need to be estimated
from costly samples of past spreads. The existing literature on DP
analyses of graphs, e.g., node- or edge-DP [16, 18, 32], has devoted
much attention to graph statistics, e.g., subgraph counts, and is
not directly applicable to influence maximization. Furthermore, our
hardness results below indicate that common operationalizations of
DP for graph algorithms, e.g., node- or edge-DP, are too stringent to
render useful performance guarantees for influence maximization.
Similar observations have been made about node- and edge-DP
guarantees of other graph algorithms [7, 8, 14, 26].

Informal Main Results 1. Given 𝑛 ≥ 1 and 𝜖 > 0, there can be no
𝜖-node-DP or 𝜖-edge-DP seeding algorithms that give an approxima-
tion guarantee better than (1 − 1/𝑒)OPT − 𝛼𝜖𝑛 for 𝛼𝜖 ≥ 1/1000𝑒𝜖 .

We formulate new differential privacy notions with guarantees
for influence maximization when social network is unknown and
the algorithm inputs are samples of prior influence cascades that are
collected at random, i.e., influence samples, x ∈ {0, 1}𝑛×𝑚 , where
x𝑖 𝑗 indicates appearance of node 𝑖 in the 𝑗th cascade:

Definition 2.1. Given 𝜖 ≥ 0, 𝑛,𝑚 ≥ 1, and 𝑘 ≤ 𝑛, a function
𝑀𝑘 : {0, 1}𝑛×𝑚 → Y is 𝜖-influence sample differentially private if
for all outputs y ∈ Y of 𝑘 seeds, and all pairs of adjacent datasets
(collection of influence samples), x∼x′ that differ at one entry, we
have: Pr[𝑀𝑘 (x) = y] ≤ 𝑒𝜖 Pr[𝑀𝑘 (x′) = y] .

Influence sample differential privacy bounds each node’s privacy
loss in deciding whether or not their data should be included in the
influence samples — as opposed to the social network graph, which
is critically different from DP analysis of graphs. Our notion applies
when a data donor may be willing to donate most but not all of
their contagion history, by providing plausible deniability for a few
cascades that can have sensitive or compromising information. In
our approach, each node’s decision to appear in the input data does
not affect the data generation process of the influence samples or
the underlying diffusion process; the network graph remains the
same and the privacy implications are studied with respect to the
construction of the samples on a fixed network. This allows us to
meaningfully bound the effect of the removal of a node’s data on

the algorithmic performance and to use those bounds to tradeoff
the privacy risks against improved performance.

Sample complexity with differential privacy and approximation
guarantees. Our results build on recent work about seeding with
costly network information [13], and more broadly sample com-
plexity of influence maximization [9, 37]. To mitigate privacy risks,
we use randomization to provide plausible deniability certificates
to those contributing to the input data in one of the two ways: (i)
randomizing the algorithm output by exponential mechanisms, i.e.,
central DP [28], (ii) injecting noise in the input data by randomized
response mechanisms, i.e., local DP. Accordingly, we propose two
efficient DP seeding algorithms and show their accuracy in terms
of the sample size𝑚, network size 𝑛, seed set size 𝑘 , and privacy
budget 𝜖 :

Informal Main Results 2. Given a graph G of 𝑛 ≥ 2 nodes, and
𝑘 ≤ 𝑛, for any 0 < 𝛼 ≤ 1 and 0 < 𝜖 < 1/2, we give a set of
algorithms that are centrally or locally 𝜖-ISDP and their outputs infect
at least (1 − 1/𝑒)OPT − 𝛼𝑛 nodes with high probability. Our central
𝜖-ISDP algorithm using exponential mechanisms requires at least
𝑚 = max{ 12

𝛼𝜖 ,
9
𝛼2 }𝑘 ln𝑛 influence samples and runs in𝑂 (𝑘𝑛𝑚) time.

Our local 𝜖-ISDP algorithm uses randomized response mechanism on
the influence samples, but requires more (exponentially in 𝑘) influence
samples:𝑚 = 𝑂 (𝑘3𝜖−2𝑘2

ln𝑛/𝛼2) with 𝑂 (𝑛𝑘4 + 𝑘𝑛2𝑚) run time.

Exponential mechanism (central DP) only protects the input data
against the algorithmic revelations of the output (seeded nodes),
giving the algorithm itself unhindered access to user data. On the
other hand, the randomized response mechanism (local DP) pro-
vides a stronger privacy notion that protects the input data directly
against any (adversarial) misuse, regardless of – and including —
their use for seeding. Our results address both central and local
notions of privacy, providing performance (utility) and sample com-
plexity guarantees for influence maximization algorithms whose
outputs/inputs are randomized at a desired level to give central/local
DP protection given our input data structure, i.e., influence samples.

3 CONCLUSIONS
The correlated nature of social network information has been noted
as a vulnerability in DP formulations which provide user-level guar-
antees with respect to the addition or removal of a single user’s data
but ignore information leakage across different users’ records [34].
By focusing on the utility of influence samples for influence maxi-
mization, our approach guarantees users’ participation in any given
cascade is kept private either locally or centrally and preserves the
statistical validity of the cascades for influence estimation and max-
imization. Subsequently, we provide a rigorous operationalization
of action-level privacy by providing users with plausible deniability
as to whether or not they have taken part in any particular network
cascade [23]. This relaxation of user-level DP is ideally suited for the
purposes of data collection to inform network intervention designs.
We expect that our formulation and investigation of influence sam-
ple DP, with specific attention to the utility of the collected data for
network intervention design, should lead to novel generalizations
of privacy that are both consequentialist and robust to variations
in sampling distributions and randomization noise [10, 22, 27, 33].
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