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ABSTRACT
This study introduces the problem setting of Federated Reinforce-

ment Learning with Heterogeneous And bLack-box agEnts (FedRL-

HALE), in which multiple RL agents with varying policy parameter-

izations, training configurations, and exploration strategies work

together to optimize their policies through the proposed Federated

Heterogeneous Q-Learning (FedHQL) algorithm. Empirical results

demonstrate the effectiveness of FedHQL in improving system per-

formance and increasing the sample efficiency of individual agents

with high confidence.
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1 INTRODUCTION
Leveraging on the growing literature of federated learning (FL)

[7, 9, 12, etc.], federated reinforcement learning (FedRL) [18] has

emerged as a promising approach to improve the sample efficiency

of RL agents in real-world environments. FedRL achieves collective

intelligence [16] from distributed agents without requiring access

to the raw trajectories of agent-environment interactions.

Despite their promising theoretical results [2, 3, 6, 8] and practi-

cal applications [5, 10, 11, 13, 15, 17, etc.], current FedRL algorithms

have a limitation that they presume that all participants are ho-
mogeneous. This means that all agents must have the same policy

parameterization (e.g., the architecture of the policy neural network,

including the number of layers, the activation function, etc.) and the

same training configurations for the policy (e.g., the learning rate).

Such an assumption can be a significant limitation in real-world

applications where agents are often heterogeneous, due to various

disagreements such as computational budgets, assessments of the

task’s difficulty, etc.
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This study introduces the problem of Federated Reinforcement

LearningwithHeterogeneousAnd bLack-box agEnts (FedRL-HALE),

and proposes the Federated Heterogeneous Q-Learning (FedHQL)

algorithm. FedHQL presents a federated version of Upper Confi-

dence Bound (FedUCB) that addresses the Exploration-Exploitation

(E&E) dilemma [1] in the multi-agent case, which we refer to as

Inter-agents exploration problem. Empirical results demonstrate

the effectiveness of FedHQL in improving system performance and

increasing the sample efficiency of individual agents with high

confidence. For an extended version of this paper, refer to [4].

2 PROBLEM FORMULATION
Consider the task of federatively solving a sequential decision-

making problem represented by the Markov Decision Process 𝑀 ≜
{S,A,P,R, 𝛾, 𝜌,𝑇 } [14]. Let the set B ≜ {𝑄𝑛 (𝑎 |ℓ𝑛 (𝑠 ;𝐷𝑛, 𝜔𝑛))}𝑁𝑛=1

denote a group of 𝑁 distributed heterogeneous and black-box

agents. Each agent B𝑛 independently operates in a separate copy of

the underlyingMDP𝑀 following its policy 𝜋𝑛 , and generates its pri-

vate experience data 𝐷𝑛 ≜ {(𝑠, 𝑎, 𝑠 ′, 𝑟 )𝑖 } |𝐷𝑛 |
𝑖=1

. Each action valuator

𝑄𝑛 (𝑎 |ℓ𝑛 (𝑠 ;𝐷𝑛, 𝜔𝑛)), which we will use 𝑄𝑛 (𝑠, 𝑎) to denote, consists

of a non-linear function ℓ𝑛 (𝑠;𝐷𝑛, 𝜔𝑛) which predicts the value of

action 𝑎 given a state 𝑠 . The non-linear function ℓ𝑛 (𝑠;𝐷𝑛, 𝜔𝑛) is
parameterized by a neural network with parameters𝜔𝑛 and learned

using the private experience data 𝐷𝑛 .

Due to the heterogeneity among agents, different agents may

choose different neural network architectures and employ different

optimization methods to train their networks. To facilitate knowl-

edge aggregation, we let the central server broadcast query state(s)
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Figure 1: Graphical illustration of FedHQL.
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to agents and query their estimations of the values of all actions

at these candidate states (i.e., 𝑄𝑛 (𝑠, 𝑎),∀𝑎). Then, the server can

combine the knowledge of the entire group of agents by aggre-

gating the received action value estimations 𝑄𝑛 (𝑠, 𝑎)’s. Of note,
the information regarding the non-linear function ℓ𝑛 (including

its architecture, weights 𝜔𝑛 , training methods, and other training

details), as well as the local experience data 𝐷𝑛 , is not revealed to

any other party, including the central server.

The E&E dilemma [1] requires an agent to balance between

exploiting its current knowledge and exploring to acquire new

knowledge, which we will refer to as the intra-agent exploration
problem. Similarly, in the setting of FedRL-HALE when the server

selects its action by aggregating information from all agents, a

natural trade-off arises: Should the server select actions by exploit-
ing the current information provided by all agents ? Or should the
server select exploratory actions for which the agents have inconsis-
tent value estimations? This additional exploration-exploitation

dilemma similarly highlights the requirement for a principled al-

gorithm to balance the trade-off between exploiting the current

knowledge of the entire group of agents and exploring to obtain

new knowledge, which we will denote as inter-agent exploration.

3 FEDHQL
Here we discuss the key components of FedHQL illustrated in Fig. 1.

Federated Q-learning. At the core of FedHQL is the federated

version of Q-learning with 𝑁 heterogeneous and black-box agents.

Each agentB𝑛 independently interacts with its own copy of theMDP

using its preferred intra-agent exploration strategy. Each agent B𝑛
updates its current estimation of action values 𝑄𝑛 (𝑠, 𝑎) through
Q-learning: as follows:𝑄𝑛 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄𝑛 (𝑠𝑡 , 𝑎𝑡 )+𝛼𝑛 [R(𝑠𝑡+1, 𝑎𝑡+1)+
𝛾 max𝑎 𝑄𝑛 (𝑠𝑡+1, 𝑎) −𝑄𝑛 (𝑠𝑡 , 𝑎𝑡 )] .

Federated Upper Confidence Bound (FedUCB). FedUCB be-

gins with the following corollary:

Corollary 3.1 (FedUCB). Under the same assumptions and no-
tations defined in Theorem 4.2 in [4], for any 𝑐 > 0, with probability
at least 1 − 3𝑒−𝑐 , we have

𝜇𝑠,𝑎 ≜ 𝑄∗ (𝑠, 𝑎) ≤ 𝑄UCB (𝑠, 𝑎) ≜ 𝑄 (𝑠, 𝑎) +
√︂

2𝑐V𝑠,𝑎

𝑁
+ 3𝑏𝑐

𝑁
.

Corollary 3.1 suggests that the optimal value of action 𝑎 at state 𝑠 ,

𝑄∗ (𝑠, 𝑎), is upper-bounded by 𝑄UCB (𝑠, 𝑎) defined above with high

confidence. Inspired by Corollary 3.1, we develop our practical

FedUCB algorithm for the knowledge aggregation in FedRL-HALE,

which firstly calculates (for any 𝑠, 𝑎):

𝑄 (𝑠, 𝑎) = 1

𝑁

𝑁∑︁
𝑛=1

𝑄𝑛 (𝑠, 𝑎), (1)

𝑄std (𝑠, 𝑎)2 =
1

𝑁

𝑁∑︁
𝑛=1

[𝑄 (𝑠, 𝑎) −𝑄𝑛 (𝑠, 𝑎)]2, (2)

𝑄UCB (𝑠, 𝑎) ≃ 𝑄 (𝑠, 𝑎)︸ ︷︷ ︸
exploitation

+𝜆𝑄std (𝑠, 𝑎)︸     ︷︷     ︸
exploration

, (3)

where the degree of exploration is controlled by the parameter 𝜆,

which we will refer to as inter-agent exploration coefficient, such

that a larger 𝜆 encourages the selection of more exploratory actions.

Table 1: Configurations of 𝑁 = 5 agents for FedHQL

Agent No. Network Learning rates Intra-exploration coefficient

1 64x64 (Tanh) 0.005 0.01

2 128x128 (ReLU) 0.01 0.1

3 32x32 (Tanh) 0.01 0.05

4 16x16 (ReLU) 0.02 0.01

5 8x8x8 (ReLU) 0.001 0.01
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Figure 2: Learning curves of FedHQL against self-learning.

Federated Temporal Difference (FedTD).With the FedUCB

derived above , the server is able to optimistically select an action

that leads to high returns with high probability. Inspired by Fan et al.

[3], we let the server operate in another separate copy of the un-

derlying MDP and execute the selected action 𝑎, hence generating

a new sample (𝑠𝑡 , 𝑎, 𝑠𝑡+1, 𝑟𝑡 ). This new sample will then be used to

perform a federated version of Temporal Difference (FedTD) learn-

ing: 𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼s (𝑟𝑡 + 𝛾 max𝑏 𝑄 (𝑠𝑡+1, 𝑏) − 𝑄 (𝑠𝑡 , 𝑎𝑡 ))
where 𝑄 (𝑠𝑡 , 𝑎𝑡 ), the details of which can be found in 1.

Individual Improvement. After the FedTD target 𝑄 (𝑠𝑡 , 𝑎𝑡 ) is
updated, we let the server broadcast the updated 𝑄 (𝑠𝑡 , 𝑎𝑡 ) back to

all agents. An agent B𝑛 will then update its own action value esti-

mation 𝑄𝑛 using the following regression loss: L𝑛 ≜ ∥𝑄 (𝑠𝑡 , 𝑎𝑡 ) −
𝑄𝑛 (𝑠𝑡 , 𝑎𝑡 )∥2 , which serves as a regularizer that periodically up-

dates agent B𝑛 ’s parameter 𝜔𝑛 by 𝜔𝑛 ← 𝜔𝑛 − 𝛼𝑛∇L𝑛 where 𝛼𝑛 is

a step-size hyper-parameter. This loss essentially helps the agent to

improve its knowledge about action 𝑎𝑡 at state 𝑠𝑡 using the knowl-

edge aggregated by FedUCB and updated by FedTD.

4 EMPIRICAL EVALUATION
We investigate the efficacy of FedHQL in improving the overall sys-

tem performance with 5 heterogeneous agents depicted in Tab. 1.

Given the fixed budget of each agent, we examine the average

performance of agents versus the average consumption of the bud-

get per agent. The results in both tasks are plotted in Fig. 2. The

figures show that FedHQL with different choices of inter-agent
exploration coefficients, FedHQL (𝜆 = 0, 1, 3, 5, 10), significantly im-

proves the average performance per agent over that of independent

self-learning, DQN (w.o. Fed). For example, in the LunarLander

task, an agent is expected to consume at least 40% of its budget

(i.e., total 1.6m = 4 × 10
6 × 0.4 interactions) on average to receive

positive returns while an agent in FedHQL (𝜆 = 1) can achieve a

performance close to 100 using only about 20% of its budget (i.e.,

total 0.8m = 4 × 10
6 × 0.2 interactions). More experimental results

and analysis can be found in [4].
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