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ABSTRACT
Many real-world problems require a trade-off between multiple
conflicting objectives. Decision-makers’ preferences over solutions
to such problems are determined by their utility functions, which
convert multi-objective values to scalars. In some settings, utility
functions change over time, and the goal is to find methods that can
efficiently adapt an agent’s policy to changes in utility. Previous
work on learning with dynamic utility functions has focused on
model-free methods, which often suffer from poor sample efficiency.
In this work, we instead propose a model-based actor-critic, which
explores with diverse utility functions through imagined rollouts
within a learned world model between interactions with the real en-
vironment. An experimental evaluation on Minecart, a well-known
benchmark for multi-objective reinforcement learning, shows that
by learning a model of the environment the quality of the agent’s
policy is improved compared to model-free algorithms.
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1 INTRODUCTION
Multi-objective reinforcement learning (MORL) provides methods
that allow agents to learn optimal policies inmulti-objectiveMarkov
decision processes (MOMDPs) [4, 10]. A MOMDP uses vector re-
ward signals [12], with each element representing one of the ob-
jectives, in contrast to the scalar rewards used in single-objective
reinforcement learning [11], resulting in vector returns. To eval-
uate the outcomes of different solutions in relation to each other,
a utility function is used to convert the vector return to a scalar,
representing a specific trade-off among the objectives.

In some scenarios, the utility function is not fixed over time. In
MORL research this is referred to as theDynamic Utility Scenario [4].
For instance, the utility of a mining company’s distribution of its
equipment over its mines will change as the prices of different ores
change. To handle such changes in utility efficiently, it is desirable
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to reuse information from learning with previously encountered
utility functions, instead of restarting learning from scratch. Recent
work proposes to use a single neural network to represent multiple
policies, by conditioning the network on preference weights, and
enforces diversity in the contents of the replay buffer in terms of the
crowding distance of the returns of stored trajectories [1, 2, 7, 14].
Performance is improved compared to training several separate net-
works. Preference weights represent a linear utility function, where
each weight specifies the corresponding objective’s importance in
relation to the other objectives. Conditioned networks have proven
useful in the dynamic utility scenario and other settings [5, 8, 9, 15].

Previous work in MORL for learning with dynamic utility func-
tions has focused on model-free learning, which often suffers from
poor sample efficiency. In this work, we instead propose a model-
based actor-critic, based on DreamerV2 [3]. An experimental evalua-
tion shows that the model-based agent (MO-Dreamer) significantly
outperforms the model-free state-of-the-art in an environment with
frequent utility changes. To the best of our knowledge this is the
first study of model-based multi-objective reinforcement learning
in the dynamic utility scenario.

2 METHOD
An overview of MO-Dreamer is shown in Figure 1. MO-Dreamer
uses the same recurrent state space model, image predictor, and
discount predictor as DreamerV2, but predicts vector rewards to en-
able modelling of MOMDPs: 𝑟𝑟𝑟𝑡 ∼ 𝑝𝜙 (𝑟𝑟𝑟𝑡 |ℎ𝑡 , 𝑧𝑡 ), where ℎ𝑡 and 𝑧𝑡 are
given by the recurrent and representation models with parameters
𝜙 . We make the assumption that the elements of the multi-objective
reward are statistically independent, and represent them as indi-
vidual univariate Gaussians with unit variance in the world model.
The reward predictor’s contribution to the world model loss is then
−∑𝑛

𝑖=1 ln 𝑝𝜙 (𝑟𝑖,𝑡 |ℎ𝑡 , 𝑧𝑡 ) for a MOMDP with 𝑛 objectives.
The world model is trained with data collected from the agent’s

past experiences with the real environment. In the dynamic utility
scenario, it is important to quickly learn environment features
suitable for multiple utility functions. To ensure diversity in the data
used in the early stages of learning, we use two connected replay
buffers and enforce diversity in the first buffer based on crowding
distance as in [1]. When the main buffer is full, the trajectory that
contributes the least to diversity is moved to the secondary buffer,
which uses a first-in-first-out (FIFO) principle. We then sample
trajectories from either buffer with a probability proportional to
the number of environment steps contained in each of them. This
means that the early stages of learning will prioritise sampling from
the diverse buffer, while later stages of learning will sample from
either buffer with equal probability.
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Table 1: Average episodic Δ and Δ+ over ten iterations

Algorithm Δ overall Δ last 250k steps Δ+ overall Δ+ last 250k steps

CN-NER 0.0791 ± 0.0041 0.0292 ± 0.0024 0.0926 ± 0.0038 0.0476 ± 0.0023
MO-Dreamer 0.01120.01120.0112 ± 0.0159 −0.0185−0.0185−0.0185 ± 0.0018 0.03480.03480.0348 ± 0.0124 0.00960.00960.0096 ± 0.0007

MO-Dreamer-No-DER 0.0583 ± 0.0415 0.0309 ± 0.0424 0.0724 ± 0.0329 0.0484 ± 0.0330
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Figure 1: Learning method (a), evaluation environment (b), and performance over ten iterations (c)

We use an actor-critic setup to learn the behaviour of the agent,
where the critic learns a multi-objective value function that guides
the updates of the actor’s policy. To enable single-network rep-
resentations of the action distributions as well as the state value
functions of multiple policies, we condition both actor and critic
on the current utility weights: 𝑎𝑡 ∼ 𝑝𝜓 (𝑎𝑡 |𝑧𝑡 ,𝑤𝑤𝑤) and 𝑣𝑣𝑣b (𝑧𝑡 ,𝑤𝑤𝑤) ≈
𝐸𝑝𝜙𝑝𝜓

[∑
𝜏≥𝑡 𝛾

𝜏−𝑡𝑟𝑟𝑟𝜏 |𝑤𝑤𝑤
]
, where𝜓 and b are the parameters of the

actor and critic. When the critic gets a certain weight as input in
combination with the current model state, it will output the corre-
sponding vector of objective values. When the actor gets a weight
and model state pair as input, it will select the best policy for opti-
mising the corresponding utility. The actor-critic is trained through
imagination rollouts within the world model, which makes it possi-
ble to revisit states and utility weights previously encountered to
improve the policy for the corresponding situation.

3 EXPERIMENTAL EVALUATION
We perform experiments on theMinecart benchmark [1], illustrated
in Figure 1, with the default configuration for the mines, 𝛾 = 0.98,
and train for 1M steps. We use frequent utility changes, where
changes occur in each episode. As in previous work, we use a
linear utility function represented by preference weights. For linear
utility functions a convex coverage set (CCS) contains all optimal
policies [10, 13]. As evaluation metric we use regret against an
approximated CCS, calculated using the heuristic proposed in [1]:
Δ(𝑔𝑔𝑔,𝑤𝑤𝑤) = 𝑉𝑉𝑉 ∗

𝑤𝑤𝑤 ·𝑤𝑤𝑤 − 𝑔𝑔𝑔 ·𝑤𝑤𝑤 , where𝑉𝑉𝑉 ∗
𝑤𝑤𝑤 is the optimal value in the

CCS for the current weight vector𝑤𝑤𝑤 , and𝑔𝑔𝑔 is the discounted return.
Since we are using an estimate for the optimal utility, there is a
chance that the regret estimate could become negative, if the agents
learn policies that outperform the heuristic. To investigate if, and to
what extent, this happens we also calculate results where negative
regrets are clipped and denote those metrics by Δ+ =𝑚𝑎𝑥 (Δ, 0).

We use utility conditioned DQN [6] with diverse experience
replay (DER) buffer [1] combined with near on-policy experience
replay (NER) [14] as baseline (CN-NER), since prior work has shown
that it has state-of-the-art performance in environments with fre-
quent utility changes. Table 1 and Figure 1 show that MO-Dreamer
significantly outperforms the model-free baseline in terms of av-
erage episodic regret and cumulative regret. We can also see that
MO-Dreamer improves on the approximate CCS after convergence,
as indicated by the negative value of the average episodic Δ and the
sloping curve of the average cumulative Δ. An ablation study shows
that MO-Dreamer without diversified dataset and sampling per-
forms significantly worse than the full agent. In addition to reducing
regret, MO-Dreamer completes on average 57183.2±760.4 episodes
over the allocated 1M environment steps, while the baseline CN-
NER completes only 40408.3 ± 893.7 episodes. This illustrates the
high quality of the learned world model, resulting in a robust policy
that can complete many successful episodes in few steps.

4 CONCLUSION
In this work, we proposed MO-Dreamer, a model-based agent for
learning in environments with dynamic utility functions. MO-
Dreamer uses imagination rollouts with a diverse set of utility
functions to explore which policy to follow to optimise the return
for a given set of objective preferences. An experimental evaluation
showed that MO-Dreamer significantly outperforms the model-free
state-of-the-art algorithm for MORL on the Minecart benchmark
with frequently changing preference weights. In future work we
intend to study how learned world models can be used for transfer
learning in multi-objective decision-making problems. For instance,
we would like to study how the world model learned when acting
with a linear utility function can be used to transfer to non-linear
utility functions.
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