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ABSTRACT

When learning a task as a team, some agents in Multi-Agent Re-
inforcement Learning (MARL) may fail to understand their true
impact in the performance of the team. Such agents end up learning
sub-optimal policies, demonstrating undesired lazy behaviours. To
investigate this problem, we start by formalising the use of tem-
poral causality applied to MARL problems. We then show how
causality can be used to penalise such lazy agents and improve
their behaviours. By understanding how their local observations
are causally related to the team reward, each agent in the team
can adjust their individual credit based on whether they helped to
cause the reward or not. We show empirically that using causality
estimations in MARL improves not only the holistic performance
of the team, but also the individual capabilities of each agent. We
observe that the improvements are consistent in a set of different
environments.
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1 INTRODUCTION

In cooperative Multi-Agent Reinforcement Learning (MARL) multi-
ple agents must learn strategies as a team in order to solve certain
tasks where their cooperation is needed. In this type of problems,
each agent is required to interact with the teammates in such a way
that leads the team to achieve a common goal [3].

Centralised training decentralised execution (CTDE) [4, 7] is a
paradigm adopted by several popular approaches in MARL. In this
paradigm, during execution the actions of the agents are only con-
ditioned on their local observations, but during training they have
access to extra state information of the environment. This creates
a reasonable balance between two inherent problems in MARL: the
exponential growth of the action space and the non-stationarity
[1]. However, one problem that still remains is known as the lazy
agent pathology and can happen when the credit assignment to
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the agents is not correct [8]. As the name suggests, lazy agents are
agents that do not cooperate towards the common overall goal of
the team due to learning sub-optimal policies. However, in MARL
the reward is given to the whole team, leading these agents to think
that they always contribute to the reward received.

With this work, we aim to bridge the concepts of temporal causal-
ity and MARL. By introducing Independent Causal Learning (ICL),
we demonstrate that, if we can detect causal relations between indi-
vidual observations and rewards in MARL, then we can address the
lazy agent problem. Furthermore, we demonstrate how independent
agents develop more cooperative and more intelligent behaviours
when compared to simple fully independent learners. Addition-
ally, we show that causal relations in multi-agent systems between
individual observations of agents and the team reward can be de-
tected by Amortized Causal Discovery (ACD) [5], a state-of-the-art
causality detection method.

2 METHODS

2.1 Independent Causal Learning (ICL)

In this section we present Independent Causal Learning (ICL). The
goal of this method is to show that causality detection can be used
in cooperative tasks by punishing lazy agents. At the same time, we
create a ground truth for the next method ACD-MARL, that uses
ACD. To formalise the proposed method, we build the link between
Granger Causality [2] and MARL scenarios based on the definitions
of Granger Causality for non-linear systems [5, 10]. Thus, we can
write the definition:

DEFINITION 1. Let E represent a certain episode sampled from a
replay buffer of experiences in MARL, denoting a set of time series
of N observations and rewards E = {o1,...,0N,r}. Given a non-
linear function g, that maps a set of past values to the series r, for
the set E we can say that a series o; Granger-causes the series r if
gr depends on the past values of 0;. Formally, we can write HO;St #
.,o;St,.,.,of[t,r) igr(oft,...,oft,...
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This definition bridges the concepts of causality and MARL. We
can now define a rule for the calculation of each individual causality
factor c;, and how they are used in the learning problem,

ci(oj,r) = { e{1,..

and, as a result, we can adjust the Q-update as it follows:
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Figure 1: Team rewards achieved in the environments.

To let agents learn independently, in this work we consider
independent policy networks ; (except for QMIX) that are updated
independently using the DQN loss function [6], but with respect to
Qi. InICL each agent adjusts the reward in the loss for the network
update, as described in Eq. 2. Note that, in this paper, Independent
Deep Q-learning (IDQL) refers to the use of independent DQNs for
each agent in MARL, similarly to as introduced in [9].

2.2 Causality Effect in the Environments Used

Predator-Prey A team of 4 agents needs to capture 2 moving preys.
Every time a prey is caught, the team receives a positive reward.
However, since two agents at the same time are enough to capture a
prey, some of them might not have been involved in the capture and
can become lazy. To adjust the credit, we use a causality concept
to relate the individual observations with the team reward: at each
timestep ¢, each agent will only be rewarded if there is a positive
reward (capture), and there is at least one prey in the observation
mask of the agent in the moment before the capture.

Lumberjacks A team of 4 agents has to chop all the existing
trees in the map. Each tree has a randomly assigned level /, where
I agents are needed at the same time to cut the tree. There is a
team reward every time a tree is cut, but the credit to the agents is
adjusted under the conditions: there is a positive reward (tree is cut)
and 1) there is a tree in the observation mask of the agent in the
moment before the tree was cut, and 2) the number of agents seen
by the agent in its observation mask (including itself) is greater or
equal than the level of at least one of the trees in the observation
mask of the agent.

2.3 Amortized Causal Discovery for MARL

We introduce a second approach ACD-MARL, intending to support
that causal relations exist in the dynamics of MARL and can be
inferred. To this end, we show how ACD can be combined with
MARL problems and used to infer observation-reward causal re-
lations within teams of agents. ACD is a deep learning causality
detection method and is theoretically aligned with Granger Causal-
ity [5]. ACD models causal relations among a set of input series
using an encoder-decoder architecture where the latent space rep-
resents the edges of a causal graph. For the proposed, method we
use a modified ACD architecture applied to MARL problems. The
goal is to detect causal relations between individual observations
and the team reward. We start by gathering MARL samples that
are given to the model, where the resulting latent space denotes a
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Figure 2: Behaviour of trained agents for ICL vs IDQL. (a)
preys caught per agent in Predator-Prey (50 episodes); (b)
total distance from each agent to the other agents over one
trained episode of Lumberjacks (if they move closer they will
solve the task more easily).

(N +1) x (N +1) adjacency matrix that represents the edges of the
learned causal graph across the N + 1 MARL time series. From this
graph, we extract the learned values that correspond to c;(0;,r) in
the ICL ground truth.

3 EXPERIMENTS AND RESULTS

We start by evaluating the performance of ICL, using QMIX and
IDQL as benchmarks. In Fig. 1(a) we can see that all methods learned
policies that solve Predator-Prey, but, while ICL learns the task
sooner, IDQL stays slightly below the other methods. Fig. 1(b) shows
that QMIX can easily solve Lumberjacks, demonstrating the useful-
ness of centralised training in this scenario. Although ICL does not
converge as quickly as QMIX in this case, it eventually reaches the
same level, while IDQL fails to achieve an optimal reward. When
we look at the behaviours learned by IDQL and ICL agents, Fig. 2(a)
and 2(b) show that IDQL agents do not cooperate nearly as much
as ICL agents. In both tasks, there is a higher participation of the
agents towards helping the team when they use a causality factor.
This also explains the better performances as a team in Fig. 1(a)
and 1(b).

To evaluate the second method ACD-MARL, we use the causality
detection mechanisms of ICL presented in the previous section as
the ground truth. The results show that the predicted 0 — r causal
relations (that correspond to c¢;) by ACD-MARL are close to the
ground truth relations of ICL, enforcing that causal relations are
indeed present in the underlying dynamics of MARL. The method
achieves 68% and 67% of accuracy for Predator-Prey and Lumber-
jacks, respectively. It is important to note that the cases where
ACD-MARL fails to predict correspond mostly to false positive
cases (29%/32% and 28%/33%). The false positive cases are not as
harmful for the performance of the team, since false positives boil
down to simple independent learning when we use the predicted c;
to adjust the credit assignment. By having these sparsely together
with a high number of correct credit assignment causal predictions,
it would still result in an improvement of team performance and
individual behaviours.
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