
Multi-objective Reinforcement Learning in Factored MDPs with
Graph Neural Networks

Extended Abstract

Marc Vincent
Thales Land and Air Systems

Paris, France
LIP6, Sorbonne Université, CNRS

Paris, France
marc.vincent@thalesgroup.com

Amal El Fallah Seghrouchni
LIP6, Sorbonne Université, CNRS

Paris, France
Ai Movement - International Artificial

Intelligence Center of Morocco,
Mohammed VI Polytechnic University

Rabat, Morocco
amal.elfallah@lip6.fr

Vincent Corruble
LIP6, Sorbonne Université, CNRS

Paris, France
vincent.corruble@lip6.fr

Narayan Bernardin
Thales Land and Air Systems

Paris, France
narayan.bernardin@thalesgroup.com

Rami Kassab
Thales Land and Air Systems

Paris, France
rami.kassab@thalesgroup.com

Frédéric Barbaresco
Thales Land and Air Systems

Paris, France
frederic.barbaresco@thalesgroup.com

ABSTRACT
Many potential applications of reinforcement learning involve com-
plex, structured environments. Some of these problems can be ana-
lyzed as factored MDPs, where the dynamics are decomposed into
locally independent state transitions and the reward is rewritten
as the sum of local rewards. However, in some scenarios, these
rewards may represent conflicting objectives, so that the problem is
better interpreted as a multi-objective one, with a weight associated
to each reward. To deal with such multi-objective factored MDPs,
we propose a method which combines the use of graph neural net-
works, to process structured representations, and vector-valued
Q-learning. We show that our approach empirically outperforms
methods that directly learn from the scalarized reward and demon-
strate its ability to generalize to different weights and number of
entities.

KEYWORDS
Multi-objective; Reinforcement Learning; Factored MDP; Relational
Learning; Graph Neural Networks; Deep Learning

ACM Reference Format:
Marc Vincent, Amal El Fallah Seghrouchni, Vincent Corruble, Narayan
Bernardin, Rami Kassab, and Frédéric Barbaresco. 2023. Multi-objective
Reinforcement Learning in Factored MDPs with Graph Neural Networks:
Extended Abstract. In Proc. of the 22nd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION
Most research in reinforcement learning (RL) focuses on end-to-end
learning, where the agent starts out with no prior on the task. How-
ever, for complex problems, we often have information about the
structure of the environment at our disposal. This information can

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

be used to inject priors into the learning process. Before the advent
of deep RL, researchers tackled large Markov decision processes
(MDP) by decomposing the states and rewards into locally condi-
tioned elements to obtain factored MDPs (FMDP) [3]. Even though
in recent times function approximation by deep neural networks
has alleviated these issues, accounting for the structure of the state
space still helps solving complex environments, for example using
relational learning via graph neural networks (GNN) [2, 11, 12].

In FMDPs, rewards typically have an additive structure: they
represent the sum of locally-scoped rewards. However, some tasks
are better described as striking a compromise between several
possibly contradicting objectives. Multi-objective RL (MORL) treats
such problems where multiple reward functions are used, each
associated with a different objective [9]. The overall goal is given
by a utility function that depends on these rewards and on their
associated weights, which reflect their level of priority. This setting
allows easier definitions of the desired compromises between the
competing objectives; it also makes it possible to train an agent
that adapts to utility functions that may change over time, e.g.
when using a linear scalarization whose weights are not constant.
Many promising applications of RL benefit from a multi-objective
specification, like self-driving cars [5].

In this paper, we study the case where the problem combines
a structured environment with a multi-objective specification. Al-
though significant work has been carried out for FMDPs and MORL,
to our knowledge their intersection has not received scrutiny yet.
To do so, we propose a multi-objective version of DQN [6] that
can be applied to multi-objective factored MDPs by making use of
recent advances in graph neural networks proposed in [4]. We com-
pare our method, factored multi-objective DQN (FMODQN), to the
single-objective algorithm from [4] on two novel benchmarks and
show that it outperforms this baseline, can generalize to different
reward weight vectors and number of entities, and is able to deal
with hundreds of objectives.

Poster Session III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2833

2 ALGORITHM
In FMDPs [3, 8], a state 𝑠 ∈ S is reinterpreted as a set of 𝑛 state vari-
ables (𝑠1, 𝑠2, ..., 𝑠𝑛). From there, for a given scope 𝑍 ⊆ {1, ..., 𝑛}, we
can define a scoped variable 𝑠 [𝑍] = (𝑠𝑖)𝑖∈𝑍 as a subset of the state
variables. Given 𝑛 scopes 𝑍1, ..., 𝑍𝑛 , the transition probability func-
tion can then be factored into 𝑛 locally-scoped transition functions
in the form 𝑃 (𝑠′ | 𝑠, 𝑎) =

∏𝑛
𝑖=1 𝑃𝑖 (𝑠′ [𝑖] | 𝑠 [𝑍𝑖], 𝑎). The transition

dependencies between state variables can be represented with a
directed graph where each node stands for a state variable and an
edge going from node 𝑖 to node 𝑗 indicates dependency of 𝑠 𝑗 on 𝑠𝑖 ,
i.e. 𝑖 ∈ 𝑍 𝑗 . Similarly, the reward function can be factored over𝑚
scopes 𝑍𝑟

1 , ..., 𝑍
𝑟
𝑚 , for example as a sum 𝑅(𝑠, 𝑎) = ∑𝑚

𝑖=1 𝑅𝑖 (𝑠 [𝑍𝑟
𝑖
], 𝑎).

However, in many cases each local reward can be interpreted
as a different objective. To account for this, we modify the FMDP
formalism by altering the agent’s objective to maximize the scalar-
ization of expected returns over a vector of locally-scoped rewards
R(𝑠𝑡 , 𝑎𝑡) = (𝑅(𝑠𝑡 [𝑍𝑟

𝑖
], 𝑎𝑡))1≤𝑖≤𝑚 . We restrict ourselves to linear

scalarizations with weights𝑤𝑖 ; therefore, we express the agent’s ob-
jective as max𝜋∈Π

∑𝑚
𝑖=1𝑤𝑖 E𝜋,𝑇 [

∑∞
𝑡=0 𝛾

𝑡𝑅(𝑆𝑡 [𝑍𝑟
𝑖
], 𝐴𝑡)]. The gen-

eral approach in multi-objective value-based methods is to train
a Q-value estimator that returns a matrix Q(𝑠, ·,w) ∈ R |A |×𝑚

from which we can then retrieve the scalarized action-state value
𝑄 (𝑠, 𝑎,w) = Q(𝑠, 𝑎,w)⊤ ·w. The policy is derived by choosing the
action that maximizes this scalarized Q-value [1, 10].

In contrast to otherMORLmethods, our focus is on combinatorial
generalization, that is, on environments where the number of state
variables, actions, and local rewards may vary between episodes: as
a consequence, we only consider cases where the local transitions
and rewards are defined the same for all scopes, with one action
and one reward per state variable. The method most closely related
to ours in the literature is SR-DRL [4], a single-objective algorithm
which combines a message-passing GNN and an auto-regressive
policy into a neural network trained with A2C [7] that is applicable
to FMDPs with variable state and action spaces. We adapt the GNN
architecture from [4] so that each input node represents one state
variable and the weight of its associated reward, and each updated
output node represents the Q-value associated with this reward.
Using this scheme, we can condition the network on the current
reward weights and stay invariant to the number of state variables
and rewards/weights. Since there is one action per state variable,
we augment each input node with an action embedding with value
1 if the action corresponding to this state variable is chosen, 0
otherwise. For a given action 𝑎, this augmented graph𝐺𝑎 is passed
through the GNN to obtainQ(𝑠, 𝑎,w). This operation is applied over
𝑛 augmented graphs, one for each action, to computeQ(𝑠, ·,w). The
processing can be parallelized by batching the augmented graphs.
We call this version of our algorithm Batch-FMODQN.

Unfortunately Batch-FMODQN’s time complexity is quadratic
in the number of nodes. However, this can be improved depend-
ing on the graph topology. In particular, in some environments
the state variables may be entirely independent from each other
(i.e. there are no edges in the graph). In this case, assuming we
have one action 𝑎𝑖 and one reward 𝑟𝑖 per state variable 𝑠 [𝑖], we
can process each entity separately by applying a position-wise
MLP to the list of state variables. This MLP has two outputs for
each state variable 𝑠 [𝑖]: the action-state value relative to reward 𝑟𝑖

N Baseline SR-DRL Batch-FMODQN

10 49.71 ± 0.61 54.33 ± 0.65 58.64 ± 0.58
20 33.55 ± 0.37 38.95 ± 0.41 42.82 ± 0.40
40 25.12 ± 0.21 30.04 ± 0.22 33.55 ± 0.25
80 20.58 ± 0.13 23.65 ± 0.13 27.02 ± 0.41
160 18.42 ± 0.08 19.94 ± 0.08 22.14 ± 0.27

(a) SysAdmin

N Baseline SR-DRL Split-FMODQN

10 -4.85 ± 0.04 -3.52 ± 0.03 -0.43 ± 0.01
20 -6.64 ± 0.03 -6.32 ± 0.03 -3.23 ± 0.02
40 -7.76 ± 0.02 -7.68 ± 0.02 -5.58 ± 0.02
80 -8.37 ± 0.01 -8.37 ± 0.01 -7.17 ± 0.01
160 -8.71 ± 0.01 -8.72 ± 0.01 -8.07 ± 0.01

(b) Spinning Plates

Table 1: Results of evaluation over 1000 runs in the dynamic
weights setting for different problem sizes 𝑁 . Score is the
average cumulative reward with 95% confidence interval.

that corresponds to choosing the associated action 𝑄𝑖 (𝑠 [𝑖], 𝑎𝑖 ,𝑤𝑖),
and the same action-state value corresponding to any other ac-
tion 𝑄𝑖 (𝑠 [𝑖], 𝐴 ≠ 𝑎𝑖 ,𝑤𝑖). We can then recover the scalarized Q-
value of each action via the weighted sum of the local Q-values:
𝑄 (𝑠, 𝑎𝑖 ,w) = 𝑤𝑖𝑄𝑖 (𝑠 [𝑖], 𝑎𝑖 ,𝑤𝑖) +

∑
𝑗≠𝑖 𝑤 𝑗𝑄 𝑗 (𝑠 [𝑗], 𝐴 ≠ 𝑎𝑖 ,𝑤 𝑗). This

way we do not have to directly compute the whole Q-matrix since it
would bemostly redundant; instead, the time complexity of the algo-
rithm is𝑂 (𝑛). We call this variant of our algorithm Split-FMODQN.

3 EXPERIMENTS
To validate our framework, we test it on two environments: we
apply Batch-FMODQN to a multi-objective version of SysAdmin
[3], and Split-FMODQN to Spinning Plates, a similar custom en-
vironment where all state variables are independent. We compare
our approach to SR-DRL, using the same set of hyperparameters as
in [4]; our only modification to their algorithm is the presence of
the reward weights in the node attributes, so that the network can
condition on them. Batch-FMODQN uses the same GNN architec-
ture as SR-DRL while the network for Split-FMODQN consists of a
single MLP with 5 hidden layers of size 32.. The baseline policy for
SysAdmin selects the offline computer with highest reward weight
to reboot; the baseline for Spinning Plates is a random policy. We
test our approach in the dynamic weights setting: a new reward
weight vector is generated at the beginning of each episode, both
in training and evaluation. The agents are trained with problems
of size 𝑁 = 10 and evaluated on other problem sizes. Our results,
presented in table 1, demonstrate our algorithms’ improved ability
to adapt to different reward weights and different problem sizes
compared to SR-DRL on these tasks. We also trained our algorithms
with fixed weights and 𝑁 = 10/20/40, evaluated on problems of the
same size 𝑁 , and found little difference in performance compared to
variable weights and size; this highlights FMODQN’s generalization
capabilities. Overall, our experiments confirm the efficiency of our
approach on this specific type of problems.

Poster Session III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2834

REFERENCES
[1] Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher.

2019. Dynamic Weights in Multi-Objective Deep Reinforcement Learning. In
International Conference on Machine Learning. PMLR, Long Beach, California,
USA, 11–20.

[2] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin
Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria
Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt
Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. 2018. Relational
Inductive Biases, Deep Learning, and Graph Networks. arXiv (Oct. 2018).
arXiv:1806.01261 [cs, stat]

[3] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. 2003.
Efficient Solution Algorithms for Factored MDPs. Journal of Artificial Intelligence
Research 19 (Oct. 2003), 399–468. https://doi.org/10.1613/jair.1000

[4] Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. 2021. Symbolic Relational Deep
Reinforcement Learning Based on Graph Neural Networks. In International Con-
ference on Machine Learning (Reinforcement Learning for Real Life (RL4RealLife)
Workshop). https://doi.org/10.48550/arXiv.2009.12462

[5] Changjian Li and Krzysztof Czarnecki. 2019. Urban Driving with Multi-Objective
Deep Reinforcement Learning. International Conference on Autonomous Agents
and Multiagent Systems (Feb. 2019). https://doi.org/10.48550/arXiv.1811.08586

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-Level Control through Deep Reinforcement Learning. Nature 518, 7540
(Feb. 2015), 529–533. https://doi.org/10.1038/nature14236

[7] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. International Conference
on Machine Learning 48 (June 2016), 1928–1937. arXiv:1602.01783

[8] Ian Osband and Benjamin Van Roy. 2014. Near-Optimal Reinforcement Learning
in Factored MDPs. In Advances in Neural Information Processing Systems. https:
//doi.org/10.48550/arXiv.1403.3741

[9] DiederikM. Roijers, Peter Vamplew, ShimonWhiteson, and Richard Dazeley. 2013.
A Survey of Multi-Objective Sequential Decision-Making. Journal of Artificial
Intelligence Research 48 (Oct. 2013), 67–113. https://doi.org/10.1613/jair.3987

[10] Tomasz Tajmajer. 2017. Modular Multi-Objective Deep Reinforcement Learning
with Decision Values. Federated Conference on Computer Science and Information
Systems (Feb. 2017). arXiv:1704.06676 [cs]

[11] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja
Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S.
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury
Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney,
Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hass-
abis, Chris Apps, and David Silver. 2019. Grandmaster Level in StarCraft II Using
Multi-Agent Reinforcement Learning. Nature 575, 7782 (Nov. 2019), 350–354.
https://doi.org/10.1038/s41586-019-1724-z

[12] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor
Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,
Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol
Vinyals, and Peter Battaglia. 2018. Relational Deep Reinforcement Learning.
arXiv (June 2018). arXiv:1806.01830 [cs, stat]

Poster Session III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2835

https://arxiv.org/abs/1806.01261
https://doi.org/10.1613/jair.1000
https://doi.org/10.48550/arXiv.2009.12462
https://doi.org/10.48550/arXiv.1811.08586
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1602.01783
https://doi.org/10.48550/arXiv.1403.3741
https://doi.org/10.48550/arXiv.1403.3741
https://doi.org/10.1613/jair.3987
https://arxiv.org/abs/1704.06676
https://doi.org/10.1038/s41586-019-1724-z
https://arxiv.org/abs/1806.01830

	Abstract
	1 Introduction
	2 Algorithm
	3 Experiments
	References

