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ABSTRACT
Counterfactual Multi-agent Policy Gradients (COMA) is a popular

algorithm for learning in cooperative multi-agent reinforcement

learning settings. COMA computes difference rewards to solve the

multiagent credit assignment problem by providing a local learn-

ing signal for each agent. Similar to other popular Cooperative

multiagent RL (MARL) algorithms, there is a lack of theoretical jus-

tification for COMA’s empirical success and specific way of doing

credit assignment using difference rewards. We provide such a justi-

fication by connecting COMA’s update rule to regret minimization.

We then use this connection to improve COMA’s performance by

replacing usual softmax update with Neural Replicator Dynamics

update from regret minimization literature. Experimental results

on Starcraft II maps show the relevance of these theoretical insights

for the performance of COMA in practice.
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1 INTRODUCTION
Cooperative multi-agent reinforcement learning (Coop-MARL) is a

framework for many complex real-world reinforcement learning

problems such as the coordination of autonomous vehicles [2], net-

work packet delivery [16], etc. Counterfactual Multi-Agent Policy
Gradients (COMA) is a recent technique for learning cooperation
among agents [7] which showed early empirical success in popular

cooperative multiagent learning benchmarks like StarCraft II where

each agent has to cooperate with the other agents to maximize the

single shared reward when each agent only has partial access to

the state of game. Key to COMA’s success is efficient multiagent

credit assignment through the implementation of difference rewards
which were proposed by Wolpert and Tumer [15] and Tumer and

Agogino [14]. COMA uses difference rewards to evaluate the con-

tribution of each agent’s actions by comparing with the expected

value of actions based on its current policy. For each agent, the

difference reward signal represents the advantage of including the
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agent in the system compared to the counterfactual case when it is

excluded from the system. This individual advantage signal is called

the counterfactual advantage baseline. Despite good performance,

there is lack of theoretical justification for this particular choice
of baseline. We argue that this baseline works well because it is

similar to minimizing regret in a cooperative setting. This allows

us to connect a variant of COMA’s update rule to the classic regret

minimization algorithm Hedge.

Beyond the conceptual contribution of this high-level justifica-

tion for COMA, we use this connection to argue that the current

version of gradient update rule of COMA can lead to slow learning.

This problem, and a solution to it known as Neural Replicator Dy-

namics (NeuRD) update. The NeuRD update has previously been

empirically examined in stateful competitive settings [8] and has

good convergence properties in stateless settings. In our experimen-

tal results, we show that such an update rule leads to accelerated

learning and higher performance in popular benchmark game en-

vironments StarCraft II. In the full version of the paper we also

justify COMA’s use of bounded softmax using the previous known

properties of Hedge Algorithm in bandit settings.

2 NEW INTERPRETATION AND ANALYSIS OF
COMA

To calculate its difference rewards, COMA uses a centralized critic

which calculates the counterfactual advantage baseline𝐴𝑎 .𝐴𝑎 com-

pares the value of𝑄 (𝑠,u) and the baseline∑
𝜋 (𝑢′𝑎 |𝜏𝑎)𝑄 (𝑠, (𝑢′𝑎,u−𝑎))

for agent 𝑎 and it’s action 𝑢𝑎 . However, the correctness proof for

COMA is independent of the choice of baseline, leaving no theo-
retical justification for this particular choice other than by analogy

to prior successes of difference reward approaches. We show that,

in the special case of cooperative stochastic games, the credit as-

signed to each agent through the advantage value is equivalent to

the regret of the agent. Based on this connection, we provide an

interpretation of and justification for COMA’s difference reward

implementation in terms of regret minimization in cooperative set-

tings as Theorem 1. To be able to state the theorem, we begin by

introducing a Tabular COMA, and it is given in Algorithm 1.

Tabular COMA has two changes. First, to aid in making the con-

nections to regret minimization explicit we use an all-actions update

rule rather than solely updating the action taken as COMA does.

Second, we assume a softmax policy parameterized by a tabular

representation where each parameter gives the logit of the policy

for that action and agent. This leads to the given update rule for

policies [8, equation (6)]. Tabular COMA is the natural all-actions

implementation of COMA in the setting of stateful identical interest

game. Hennes et al. [8] derive essentially the same algorithm in
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Figure 1: 25m Figure 2: 2c-vs-64zg

stateless general-sum games from Softmax Policy Gradient. As they

point out, algorithms like Tabular COMA do not quite match up

with regret minimization. The issue is the inclusion of the 𝜋𝑎 (𝑢𝑘 )
term in the update for 𝐴𝑎𝑠𝑢𝑚 (𝑢𝑘 ) in Algorithm 1. To exactly match

up with the Hedge algorithm, it should instead be omitted yielding

𝐴𝑎𝑠𝑢𝑚 (𝑠,𝑢𝑘 ) ← 𝐴𝑎𝑠𝑢𝑚 (𝑠,𝑢𝑘 ) + 𝜂𝐴𝑎 (𝑠,𝑢𝑘 ) (1)

We refer to Algorithm 1 with the update according to Equation (1)

as Tabular COMA-N, with the “N” representing the inclusion of this

“NeuRD fix.”With this variant, we can make a precise connection

between COMA’s difference rewards and regret minimization.

Algorithm 1: Tabular COMA update for an agent a having
K actions

Result: Update policy for agent 𝑎 given by 𝜋𝑎 at state 𝑠

Sample joint action u−𝑎 from other agents’ policy 𝜋 (u−𝑎);
for k = 1 to K do

𝐴𝑎 (𝑠,𝑢𝑘 ) ← 𝑄 (𝑠,𝑢𝑎
𝑘
,u−𝑎) −∑

𝑢′ 𝜋
𝑎 (𝑢′)𝑄 (𝑠,𝑢′,u−𝑎)

𝐴𝑎𝑠𝑢𝑚 (𝑠,𝑢𝑘 ) ← 𝐴𝑎𝑠𝑢𝑚 (𝑠,𝑢𝑘 ) + 𝜂𝜋𝑎 (𝑢𝑘 )𝐴𝑎 (𝑠,𝑢𝑘 )
𝜋𝑎 (𝑠) ∝ exp(𝐴𝑎𝑠𝑢𝑚 (𝑠))

Theorem 1. Given a joint action (𝑢,u−𝑎), Tabular COMA-N
is equivalent of running to a copy of Hedge at every state 𝑠 with
𝑄 (𝑠,𝑢,u−𝑎) as the reward for agent 𝑎.

Proof Sketch (See full paper for definition of Hedge).

𝜋𝑎𝑡 (𝑠) ∝ 𝑒𝑥𝑝 (𝑅𝑡𝑠𝑢𝑚 (𝑢, 𝑎)) = 𝑒𝑥𝑝
(

𝑡∑︁
𝜏=1

𝜂𝜏𝑅𝑒𝑔𝑟𝑒𝑡
𝑡 (𝑎,𝑢)

)
= 𝑒𝑥𝑝

(
𝑡∑︁

𝜏=1

𝜂𝜏

(
𝑄 (𝑠,𝑢,u−𝑎) −

∑︁
𝑢′
𝜋𝑎,𝜏 (𝑢′)𝑄 (𝑠,𝑢′,u−𝑎)

))
= 𝑒𝑥𝑝

(
𝑡∑︁

𝜏=1

𝜂𝜏𝐴
𝑎 (𝑠,𝑢)

)
= 𝑒𝑥𝑝 (𝐴𝑎𝑠𝑢𝑚 (𝑠,𝑢)) ∝ 𝜋𝑎 (𝑠)

□

Theorem 1 makes a conceptual contribution by establishing the

equivalence of two concepts which have previously been explored

separately in games with identical interests: difference rewards

and regret minimization. In doing so it also connects to the rapidly

growing literature on algorithms that learn in stateful settings via

a collection of regret minimizers [1, 4–6, 9]. In particular, Tabular

COMA-N can be viewed as a variant of LONR [10], so Theorem 1

combined with the general convergence guarantees of COMA pro-

vides a novel extension of convergence guarantees for LONR-style

algorithms from MDPs to a stateful multi-agent setting. In the full

version of this paper, we also show a richer connection between

COMA and regret minimization literature by connecting bandit

COMA and 𝜖-Hedge[3] which also explains the empirical success

of COMA.

3 EVALUATION
In this section, we analyze the importance of the NeuRD fix in

stateful settings. We note here that, our goal is to demonstrate

the relevance of our theoretical analysis to COMA, not attain

state-of-the-art results and so similar to other works on improving

COMA[11, 12], our experiments only include COMA and its vari-

ants. To implement the NeuRD fix, we use the following update

rule for actors.

Δ𝜃𝑎 = Δ𝜃𝑎 + [1/𝜋𝑎 (𝑢 |ℎ𝑎𝑡 )] ˆ∇𝜃𝑎𝜐𝑎 (𝜃𝑎)𝐴𝑎 (𝑠𝑡 ,u) (2)

For the implementation of COMA, we use the repository provided

by Foerster et al. [7].
1
For COMA-N, we threshold the range of al-

lowable logits using the same implementation as the OpenSpiel im-

plementation of NeuRD
2
. This thresholding is described by Hennes

et al. [8] as a way to prevent infinite gradients and our testing con-

firms that performance without it is poor. We present the results on

25m and 2c-vs-64g maps from the StarCraft Multi-Agent Challenge

(SMAC)[13]. In the full version of the paper we present results on

broader range of maps and environments.

3.1 StarCraft Multiagent Challenge
SMAC is built on the popular real-time strategy game StarCraft

II. It introduces challenges like partial observability, decentralized

execution, credit assignment and value assignment for joint actions.

COMA-N outperforms COMA when both algorithms are run for 5

independent runs and improves COMA’s performance on hard RL

environments. To stabilize the NeuRD policy gradient, we linearly

annealed the value of the actor’s learning rate to 1/5 or 1/10 of its
initial value over the first 150𝐾 iterations to stabilize training. The

training curves in Figures 1-2 show that the resulting algorithm

generally improves performance, most notably on the harder map

2c-vs-64zg where COMA is known to perform poorly. To confirm

that our results are due to the COMA-N and not the annealing of

the learning rate, each plot also includes a version of COMA with

this feature added (COMA+ann-lr); we found it had no significant

effect.

4 CONCLUSION
We provided a new justification for COMA’s update rule by con-

necting it to regret minimization in identical interest games. Based

on this we showed that COMA should apply the NeuRD fix and

provided a justification for COMA’s use of a bounded softmax

policy. We demonstrated the efficacy of COMA-N on variety of en-

vironments including StarCraft where it consistently outperformed

COMA and was able to learn on the harder map 2c-vs-64zg where

COMA fails.

1
https://github.com/oxwhirl/pymarl

2
open_spiel/open_spiel/python/algorithms/neurd.py
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