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ABSTRACT
Multi-Agent Systems (MAS) is the study of multi-agent interac-
tions in a shared environment. Cooperative Multi-Agent Reinforce-
ment Learning (CoMARL) is a learning framework that leverages
cooperative mechanisms or policies that exhibit cooperative be-
havior. Explicitly, there are works on learning to communicate
messages from CoMARL agents; however, non-cooperative agents
have been shown to learn sabotage a cooperative team’s perfor-
mance through adversarial communication messages. To address
this issue, we propose a technique which leverages local formula-
tions of Theory-of-Mind (ToM) to distinguish exhibited cooperative
behavior from non-cooperative behavior before accepting messages
from any agent. We demonstrate the efficacy and feasibility of the
proposed technique in empirical evaluations in a centralized train-
ing, decentralized execution (CTDE) CoMARL benchmark.
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1 INTRODUCTION
Multi-agent systems and modeling can be found in many prominent
domains including but not limited to the deployment of automa-
tion to autonomous mobile vehicles([20]), intelligent transportation
systems([12]), and financial trading portfolios([7]). Specifically, we
look to Multi-Agent Reinforcement Learning (MARL) where there
is long lived interest in theory and application, outlined by a com-
prehensive survey ([3]) and a recent paper on a selection of theories
and algorithms ([19]).

The study of agent-to-agent relationships is often described as
cooperative or non-cooperative. Agents that are fully cooperative,
often modeled as team games, can have shared rewards. Some value-
based works for fully-cooperative MARL tasks (eg. [1], [15],[16],
[11], [9]) consider estimating value functions for the shared re-
ward through some mechanism. Communication, as outlined as
a pillar for cooperation intelligence, is an important channel for
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enabling negotiation (eg. emergence of communication through
negotiation [4]), transferring information and coordination. Some
Cooperative MARL (CoMARL) solutions in-cooperate graph mod-
els leverage the CTDE paradigm to learn over a communication
channel. However, such mechanisms can be exploited as illustrated
by [2], showing that self-interested agents can learn to impair the
cooperative team’s performance by transmitting adversarial mes-
sages. Learning to communicate ([6]) in MARL may be necessary
for task completion, but there are challenges that follow such as
adversarial communication and its possibility of cascading failure
and catastrophic events (eg. impact of cascading failure in complex
networks [17].) The contributions of this paper is as followed:

• We present Theory of Mind (ToM) as a cognitive mechanism
for defense against adversarial communication by leveraging
historic, observable neighboring actions.

• We present an belief-based trust defense test-time mecha-
nism for homogeneous-policy agents or secured and acces-
sible cooperative agents’ policies. Such defense requires no
additional training and allows agents to form decentralized
ToM trust beliefs.

• We present empirical results from an adversarial communi-
cation environment, CoverageEnv.

2 RELATEDWORK
Modeling trustworthiness is a common direction for defenses (e.g.
context aware dynamic trust using hidden markov models by iden-
tifying intent [8].) One similar work on leveraging observed past
actions of other agents as an initial trust model is from Schillo
et al ([13]), but unlike their consensus-based defense, we favor
self-evaluation to minimize the need for external input. Message
filtering methods that use a variation auto-encoder bayes model
([10]) is similar to our approach; however, instead of directly learn-
ing the existing cooperative message distribution, our belief state is
dependent on observable behavior during episodic execution. An-
other relevant work ([5]) uses consensus-based decisions to detect
and eliminate adversarial robots in a flocking problem. While their
approach is more reactant to adversarial detection and dependent
on an uncompromising majority, their method uses centralized
trust evaluation, contrast and complimentary to our decentralized
method.

3 THEORY OF MIND UNDER TEST-TIME &
SELF-REVEALING BEHAVIORS

Theory of Mind (ToM) is the rationalization of other agents to some
belief state, often through Bayesian modeling. Bayesian models
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(a) ToM vs. ideal (b) ToM vs. re-adaption training
(c) FN (trusted adversary) - re-
adaption training

(d) FP (distrusted cooperative) - re-
adaption training

(e) TP adversary detection - re-
adaption training

(f) TP cooperative detection - re-
adaption training (g) f1 score - re-adaption training

have belief states that approximate probabilistic frequencies for
sequences of outcomes. ToM is well discussed in AI; however, the
explicit modeling of other agents’ belief states can require additional
burdensome computational load that may not be feasible in large-
scaled systems such as swarm robotics[14]. However, Mean-Field
MARL (MF-MARL [18]) can be a substituting framework.

We emphasize that ToM should be influential to a defense’s
design and can take on many forms. We approach ToM from the
reasoning ‘if I were them: what message would I transmit to cooperate,
and whether their observed behavior is consistent with my expecta-
tions?’ Many defenses rely on out-of-distribution detection (e.g.
VAEB message filter defense [10].) However, these defenses require
additional training outside of test-time. Our ToM belief defense,
similar to human credit history, use the history of observed actions
to update the trust probability. This defense is directed towards
test-time because an agent’s belief is only relevant to the current
episode and episode’s history. Furthermore, we believe defenses
should be layered to minimize possible damage from adversarial
communication.

We say a communicatedmessage can be described as self-revealing
or self-committing / consistent when the action stated in the message
can be observed. A message that is self-revealing reveals a cooper-
ative or non-cooperative behavior. A message is self-committing
when it is consistent with the previous transmitted message. Similar
to [10] where some empirical belief determines trustworthiness,
we consider that if other agents’ messages are not self-committing,
then communication messages should not impact an agent’s deci-
sion. We use two algorithms: trust count(1) and consensus update(2)
(algorithms details omitted) and can be summarized as the follow-
ing: all agents are set to probability 1.0 by default and after each
environment step, all agents reevaluate their trust in other agents
based on observed actions from the previous transmitted message.

4 EXPERIMENTAL RESULTS
We use the adversarial communication repository provided by [2],
training under the default settings with deterministic action selec-
tion. The team task is to maximize its coverage over an un-visited

grid. The agents access a central communication channel and use
an Aggregation Graph Neural Network (AGNN) to aggregate their
inputs. We trained under default settings with 𝑁 = 5 agents for 6
million (mil) timesteps, 6mil timesteps for the self-interested policy
with fixed cooperative policy. The re-adaption training continued
with the fixed self-interested policy for 6mil timesteps. The evalua-
tion setup has one self-interested agent (Agent0) and three cooper-
ative agents (Agent1, Agent2, Agent3). Code is publicly available1.

We present Figure 1a as an ideal baseline comparison (VAEB) with a
learning step multiplier of 3.7 and the secondary baseline of no defense
(NoDef). Then, we show in Figure 1b, the VAEB is ineffective when coop-
erative agents re-adapted their messages in the presence of self-interested
messages. In support of our hypothesis, we see ToM’s performance is not
impacted by the re-adaption training. We provide Figure 1d and Figure 1c
per agent which is the false negative (FN) and false positive (FP) mean count
respectively. We see that according to the true positives (TP) Figures 1f
and 1e, our defense by implicit design is prone to distrust. We also include
Figure 1g which is the mean f1 score after re-adaption training.

5 CONCLUSION
In this paper, we have introduced Theory of Mind (ToM) as a rationalization
of other agents’ behaviors through observed actions to determine trust
beliefs of other agents’ communicated messages. Our defense is for test-time
and requires no additional training or retraining, allowing this defense to be
easily layered among other defenses. We study a multi-agent environment
where adversarial communication emerges and demonstrate the usage of
the defense, comparing the average cooperative team’s performance with
our defense in comparison to the average cooperative team performance
without a defense and cooperative team’s performance with a variational
auto-encoder bayes defense baseline.
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