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ABSTRACT
In collaborative machine learning, protecting proprietary infor-
mation and safeguarding competitive advantages are crucial for
participating organizations. This necessitates the development of
algorithms that target a general notion of privacy defined by the
data owner: objective privacy. In this paper, we formalize the idea
of objective privacy as the protection of private value proposi-
tions characterized by predictive functions. We propose Defensive
Collaborative Learning (DCL), where participants share data collab-
oratively while safeguarding their objective privacy. Formulating a
min-max optimization problem that trades off utility and privacy
protection, we propose algorithms that leveragemutual information
backpropagation in both decentralized and centralized settings. Em-
pirical studies show that the proposed algorithms protect objective
privacy while enabling data sharing.
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1 INTRODUCTION
When organizations participate in collaborative machine learning
by sharing data, they are motivated to protect proprietary informa-
tion underlying their business value propositions, particularly in
competitive industries like finance. In the case of a bank exchang-
ing customer data with an e-commerce company to make better
data-driven decisions, such as whether to extend credit to a cus-
tomer, there is a concern that the e-commerce company will also
offer similar credit products. Banking data could provide valuable
information about credit profiles and help them compete.

This calls for a notion of privacy that captures the objective de-
fined by the data owner. Consider a dataset 𝐷 = {(x, y) |x ∈ X, y ∈
Y} and a predictive function 𝑔 : X → Y that characterizes an ob-
jective. A data-sharing algorithmM : X → Z is objective private
when it produces a representationZ of the data X for sharing such
that if any participant were to perform an objective privacy attack
(i.e., infer 𝑔), the attack’s performance gained from Z being shared
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is minimized. In the previous example, the bank’s objective could be
its proprietary function in determining if a customer would default.

This paper considers Defensive Collaborative Learning (DCL): a
vertical data-sharing setting where participants share data repre-
sentations while safeguarding knowledge pertaining to their self-
defined objectives. The objectives can be customized data privacy
functions for individuals or data-driven competitive advantages
in multi-organizational learning. Advances in DCL can facilitate
customized data privacy protection, a sophisticated data market,
and trustworthy multi-organizational learning.

2 DEFENSIVE COLLABORATIVE LEARNING
2.1 Problem Formalization
Consider the following data-sharing collaborative learning scenario:
there are 𝑛 participants, each with their own dataset X𝑖 . Here the
dataset is vertically split; that is, there is a unique identifier that
enables data linkage between X𝑖 and X𝑗 to produce a rich represen-
tation for every data record. Let X = X1 ⊗ X2 · · · ⊗ X𝑛 denote the
aggregated data containing all the features where ⊗ denotes a join
operation based on the unique identifier. Additionally, each partici-
pant has an objective that she would like to protect. We define the
objective for participant 𝑖 as the best attainable predictive function
𝑔∗
𝑖
with range Y𝑖 , representing the space of output targets.
In DCL, participants share data representations to minimize

information loss about the original data while protecting their
objective privacy. We assume that participant 𝑖 utilizes an encoder
ℎ𝑖 : X𝑖 → Z𝑖 to embed x𝑖 into z𝑖 (i.e., ℎ𝑖 (x𝑖 ) = z𝑖 ). Then we
formalize the problem as follows:

min
ℎ𝑖 ,𝑘𝑖

E[𝐿𝑟𝑒𝑝
𝑖

(X𝑖 , 𝑘𝑖 (ℎ𝑖 (X𝑖 )))]

s.t.min
𝑓𝑗

E[𝐿𝑝𝑟𝑒𝑑
𝑖

(𝑔∗𝑖 (X), 𝑓𝑗 (X𝑗 , ℎ𝑖 (X𝑖 )))] ≥ 𝑡,∀𝑗 ≠ 𝑖

Here, 𝑘𝑖 : Z𝑖 → X𝑖 denotes the decoder that reconstructs the
inputs from the embeddings. We use 𝐿𝑟𝑒𝑝

𝑖
to denote the reconstruc-

tion loss of X𝑖 with mean squared error (MSE) as the specific loss
function. 𝑓𝑗 refers to a predictive function for the output targets
𝑔∗
𝑖
(X) based onX𝑗 andℎ𝑖 (X𝑖 ). 𝐿𝑝𝑟𝑒𝑑𝑖

denotes the specific prediction
loss. Finally, 𝑡 denotes a threshold for the expected prediction loss.
When 𝑡 = min𝑓𝑗 E[𝐿

𝑝𝑟𝑒𝑑

𝑖
(𝑔∗
𝑖
(X), 𝑓𝑗 (X𝑗 ))], the shared representa-

tion provides no additional valuable information for predicting the
target. In practice, participant 𝑖 approximates the objective function
𝑔∗
𝑖
and uses the estimated values in the optimization, for example,

by training a predictor 𝑔𝑖 : X𝑖 → Y𝑖 based on X𝑖 only.
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2.2 Algorithms
Based on information theory, we approximate the constraint as a
minimization of conditional mutual information between X𝑖 and
Z𝑖 given X𝑗 [3]. By leveraging ideas from mutual information back-
propagation [4, 5], we propose the following algorithms that use a
mutual information neural estimator [1].

2.2.1 Decentralized Defensive Collaborative Learning via Mutual
Information Backpropagation (DDCL-MI).

In decentralized data sharing, each participant generates repre-
sentations independently. Thus, X𝑗 is not available for participant 𝑖
andweminimize themutual information betweenX𝑖 andZ𝑖 instead.
We adopt a general-purpose mutual information neural estimator
proposed by [1], which maximizes the following loss function to
learn 𝑡𝜙 : Z𝑖 × Y𝑖 → R where z𝑖 = ℎ𝑖 (x𝑖 ) ∈ Z𝑖 :

𝐿𝑚𝑖
𝑡 = E

(z𝑖 ,y𝑖 )∼𝑃 (𝑍𝑖 ,𝑌𝑖 )
[𝑡𝜙 (z𝑖 , y𝑖 )] − log E

z𝑖∼𝑃𝑍𝑖 ,ŷ𝑖∼𝑃𝑌𝑖
[exp 𝑡𝜙 (z𝑖 , ŷ𝑖 )]

Once maximized, 𝐿𝑚𝑖
𝑡 is used as an estimate for the mutual in-

formation. Therefore, DDCL-MI optimizes the following objective:

min
ℎ𝑖 ,𝑘𝑖

max
𝑡

E[𝐿𝑟𝑒𝑝
𝑖

(X𝑖 , 𝑘𝑖 (ℎ𝑖 (X𝑖 )))] + 𝛼𝐿𝑚𝑖
𝑡

2.2.2 Centralized Defensive Collaborative Learning via Conditional
Mutual Information Backpropagation (CDCL-CMI).

In centralized data sharing, a trusted central server generates rep-
resentations with knowledge of all participants’ data and objectives.
The server aims to maximize information sharing and protect objec-
tive privacy for all participants.With access toX𝑗 , the central server
minimizes the conditional mutual information between Z𝑖 and Y𝑖
given X𝑗 , i.e.𝑀𝐼 (Z𝑖 ,Y𝑖 |X𝑗 ). By directly estimating the conditional
mutual information with CMIGAN [4], learning instability was in-
duced due to the complexity of the two levels of min-max optimiza-
tion. Noticing that𝑀𝐼 (Y𝑖 ,Z𝑖 |X𝑗 ) = 𝑀𝐼 (Y𝑖 , (Z𝑖 ,X𝑗 )) −𝑀𝐼 (Y𝑖 ,X𝑗 )
and𝑀𝐼 (Y𝑖 ,X𝑗 ) does not depend on the encoder, we solve for the
following optimization problem instead:

min
ℎ𝑖 ,𝑘𝑖

E[𝐿𝑟𝑒𝑝
𝑖

(X𝑖 , 𝑘𝑖 (ℎ𝑖 (X𝑖 )))] + 𝛼𝑀𝐼 (Y𝑖 , (Z𝑖 ,X𝑗 ))

This enables us to use a mutual information neural estimator,
similar to DDCL-MI. We refer to𝑀𝐼 (Y𝑖 , (ℎ𝑖 (X𝑖 ),X𝑗 )) as the joint
mutual information (Joint-MI). Again, we use neural network 𝑡𝜙 :
Z𝑖 × X𝑗 × Y𝑖 → R with weight 𝜙 which maximizes the following
loss function via backpropagation:

𝐿𝑐𝑚𝑖
𝑡 = E

(z𝑖 ,x𝑗 ,y𝑖 )∼𝑃 (Z𝑖 ,X𝑗 ,Y𝑖 )
[𝑡𝜙 (z𝑖 , x𝑗 , y𝑖 )]−

log E
z𝑖 ,x𝑗∼𝑃 (Z𝑖 ,X𝑗 ) ,ŷ𝑖∼𝑃Y𝑖

[exp 𝑡𝜙 (z𝑖 , x𝑗 , ŷ𝑖 )]

Once maximized, 𝐿𝑐𝑚𝑖
𝑡 can be used as an estimate of Joint-MI.

Therefore, CDCL-CMI optimizes for the following objective:

min
ℎ𝑖 ,𝑘𝑖

max
𝑡

E[𝐿𝑟𝑒𝑝
𝑖

(X𝑖 , 𝑘𝑖 (ℎ𝑖 (X𝑖 )))] + 𝛼𝐿𝑐𝑚𝑖
𝑡

3 EXPERIMENTAL STUDY
We evaluate the algorithms on a curated two-party collaborative
learning settings based on the Adult UCI dataset [2]. After feature
transformation, the dataset size is 48842 × 66. The features are
vertically partitioned between two participants. Assuming a two-
layer neural network as the underlying predictive function, the
objectives are generated as a vector of dimensionality four. For
categorical objectives, we use the softmax activation function and
for continuous objectives, we use the identity function.

To evaluate the effectiveness of data sharing, we consider the
performance of an objective predictor, which is trained based on each
participant’s own data as well as the shared representations. Recon-
struction error is also reported in MSE as an alternative measure
for data sharing utility. As a measure of objective privacy protec-
tion, we examine the performance of an objective inference attacker,
which predicts the other participants’ target outputs. As baseline,
we also consider the following settings: (1) ML: participants do not
share data; (2) CL-AE: participants share the embeddings from the
regular autoencoder.

Table 1: Performance of Algorithms - Adult UCI

Data Type Algorithm Rep MSE ↓ Obj Acc/𝑅2 ↑ Attack
Acc/𝑅2 ↓

Continuous ML - 72.46 ± 0.27 37.25 ± 0.22 *
DDCL-MI 0.48± 0.016 90.62 ± 1.98 * 79.91 ± 5.52 *
CDCL-CMI 1.14 ± 0.43 88.91 ± 2.04 * 62.71 ± 5.45 *
CL-AE 0.09± 0.028 97.71 ± 0.66 * 95.48 ± 0.60

Discrete ML - 81.01 ± 3.04 73.67 ± 4.49 *
DDCL-MI 0.36± 0.061 94.11 ± 1.91 * 86.17 ± 3.04 *
CDCL-CMI 1.04 ± 0.403 84.25 ± 3.67 * 79.23 ± 2.63 *
CL-AE 0.08± 0.029 95.98 ± 1.93 * 93.77 ± 1.85

Notes: Accuracy and 𝑅2 is expressed in % and MSE is expressed in units of
1e-2. For objective accuracy, Wilcoxon signed rank test p-value compares

algorithms with ML. For attack accuracy, Wilcoxon signed rank test
p-value compares algorithms with CL-AE. * indicates p<0.01.

As shown in the table above, DCL algorithms, with a higher
reconstruction error than CL-AE, deliver data sharing benefits.
Compared toML, they offer better objective prediction performance.
In terms of objective privacy protection, DCL algorithms perform
much better than CL-AE, but not as well as ML. As compared
to DDCL-CMI, CDCL-CMI offers better privacy protection at the
expense of lower data sharing utility. Overall, DCL algorithms
preserve data sharing utility while protecting objective privacy.

4 CONCLUSIONS AND FUTURE DIRECTIONS
Motivated by real-life collaborative machine learning scenarios,
we propose Defensive Collaborative Learning that ensures objec-
tive privacy. By introducing the min-max optimization formulation
for DCL, we formalize objective privacy under potential objective
privacy attacks. Furthermore, we propose and examine mutual
information backpropagation algorithms in centralized and decen-
tralized settings. Based on experiments, these algorithms provide
data sharing benefits while limiting objective privacy leakage.
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