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ABSTRACT
Most reinforcement learning (RL) methods assume that the world
is a closed, fixed process, when in reality most real world problems
are open, changing over time. To address this, we introduceWorld-
Cloner, an end-to-end trainable neuro-symbolic world model that
learns an efficient symbolic model of transitions and uses this world
model to improve novelty adaptation. We show that the symbolic
world model helps WorldCloner adapt its policy more efficiently
than neural-only reinforcement learning methods.
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1 INTRODUCTION
Novelties are sudden, previously unseen changes to dataset, datas-
tream, or environment fundamentals [3, 7, 10]. In sequential decision-
making the injection of novelty, after an arbitrary and a priori un-
known number of episodes or games 𝑡 , constitutes a transformation
from the original environment or MDP𝑀 to a new environment or
MDP𝑀′. Novelty adaptation is related to transfer learning except
the adaptation must happen at deployment-time with no expecta-
tion of being able to learn the transfer offline. Novelty handling can
be broken down into three challenges: novelty detection, novelty
characterization, and novelty adaptation which is the focus of this
work. When starting with some pre-novelty knowledge, attempting
to adapt a model to new environments can induce catastrophic
inference causing the agent to transfer little, if any, of its previous
model. World model based reinforcement learners learn both the
transition function and the policy together to drive agent perfor-
mance; DreamerV2 [6] represents the state of the art in world model
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Figure 1: The WorldCloner architecture. Purple box and
black arcs: conventional RL execution loop. Blue box: rule
model learning and novelty detection. Red arcs: post-novelty
environment using rule model “imagined” state transitions.

reinforcement learning. World-model based reinforcement learning
offers possible reuse between the model and the behavior policy,
but existing state-of-the-art approaches such as Dreamer [6] cannot
always update rapidly in the face of sudden change.

To address this, we develop WorldCloner, an efficient world
model based reinforcement learning system with a neural policy
consisting of two online task transfer improvements to the standard
deep RL execution loop: (1) A fast-updating symbolic model of the
transition function that can be updated with a single post-novelty
observation, allowing faster adaptation than neural world models.
(2) An imagination-based adaptation method that improves the
efficiency of deployment-time neural policy adaptation using the
updated world model to simulate environment transitions in the
post-novelty world. This reduces the number of real environment
interactions required to update the neural policy. We build on prior
world model research that used imagination to help train standard
RL models [5, 8, 12] and multi-agent models [11].

2 WORLD CLONER
WorldCloner is an end-to-end trainable neuro-symbolic world
model comprised of two components: (1) a neural policy and (2)
a symbolic rule model that approximate the environment’s latent
transition function. The rule model serves two core functions. First,
the rule model learns to predict state transitions pre-novelty. Rule
violations thus indicate the introduction of novelty and the need to
update the rule model and the policy. Second, once in a post-novelty
environment,WorldCloner uses the rule model to simulate the en-
vironment, enabling rollouts for retraining the neural policy model
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Adaptive Efficiency Pre-novelty Asymptotic Update Efficiency
@0.95 (steps) ↓ Performance ↑ Performance ↑ (policy updates) ↓

DoorKeyChange novelty
PPO 2.25E6 0.973 0.971 2.25E6

DreamerV2 5.3E5 0.971 0.973 3.82E8
Ours 9.8E5 0.972 0.970 1.63E6

LavaProof novelty
PPO 1.39E5 0.972 0.991 1.39E5

DreamerV2 Failed to adapt 0.965 Failed to adapt Failed to adapt
Ours 8.3E4 0.972 0.991 1.38E5

LavaHurts novelty
PPO 2.08E6 0.992 0.971 2.08E6

DreamerV2 1.05E6 0.992 0.968 7.56E8
Ours 1.07E6 0.992 0.972 1.78E6

Table 1: Novelty metric results averaged over three runs.
DreamerV2 did not adapt to the novelty on LavaProof.

so as to require fewer interactions with the real environment (see
Figure 1). The rule model is independent of the policy implemented
as an Advantage Actor-Critic (A2C) [14] neural architecture trained
with Proximal-Policy Optimization (PPO) [13].

Interval-Based Symbolic World Model. The symbolic world
model, which models the transition function, is represented as a
set of rules {𝜌1 ...𝜌𝑘 } of the form ⟨𝑐𝑠 , 𝑐𝑎, 𝑒⟩ such that 𝑐𝑠 is a state
precondition, 𝑐𝑎 is the action precondition (similar to a do-calculus
precondition do(a)), and 𝑒 is an effect. The state preconditions
contain a set of values corresponding to a subset of state features
𝜙1 ...𝜙𝑚 . When both the state and action preconditions 𝑐𝑠 , 𝑐𝑎 of a
rule 𝜌𝑖 are satisfied, then it is applicable. Effects 𝑒 are the difference
between the input state and the predicted state: 𝑒 = 𝑠′ − 𝑠 . This
formulation has similarities to logical calculus frameworks such
as ADL and PDDL [9] by encoding preconditions and effects, but
our approach is designed to be learned, not engineered, similar to
“game rule” learning [4]. To support learnability, preconditions are
formulated as a set of axis-aligned bounding intervals (AABIs), also
known as hyperrectangles or 𝑛-orthotopes in feature space that
cover the training data. AABIs are𝑑-dimensional convex geometries
that define the minimum interval of values for each feature 𝜙1 ...𝜙𝑑 .

The rule learning process constructs a compact, collision-free set
of AABIs that provide maximum coverage of the state-action space
while minimizing the complexity of the symbolic world model.
The rule update process is as follows. After an action is taken, the
rule learner receives the prior state, the action taken, and a new
state. Comparing the prior state, action, and new state with the
AABIs, action preconditions, and effects of existing rules, one of
the following cases take effect:

(1) No Change: The prior state falls inside the AABI of an existing
rule with a matching action and effect. (2) Rule Creation: There is no
rule where the action precondition is satisfied or the state difference
matches the effect. A “point” rule is created that exactly describes
the prior state. (3) Rule Relaxation: A rule exists where the action
precondition is satisfied and state difference matches the effect,
but the prior state is not covered by the existing rule’s state AABI.
The rule is “relaxed” by expanding the AABI. (4) Rule Collision
Resolution: A rule exists where the action precondition and AABI
are satisfied but the effect is different. The AABI of the existing rule
is split along the min-cut.

Imagination-Based Policy Adaptation. Post-novelty, an up-
dated rule set reflects the agent’s belief about the new state tran-
sition function. The agent now uses that rule model to “imagine”

Figure 2: The adaptive performance post-novelty for the
LavaProof “shortcut” novelty.

and update its policy without interacting or executing actions in
the true environment. The agent uses the rule model to simulate
state-action-state transitions that then populate the agent’s update
buffer—the data on which the policy will be trained. The policy
training algorithm generates a loss over samples drawn from the
update buffer and back-propagates loss through the policy model
(Figure 1, red paths). The agent follows its policy in the imagined
environment and repeatedly experiences the first rule change’s
consequences, receiving a reduced (or increased) expected reward,
pushing the policy away from (or toward) the impacted actions.
To ensure that the agent doesn’t overfit to a rule model that is not
completely accurate, we periodically sample state-action transitions
from the real environment. We use imagination to generate 40% of
state-action-state training samples. See expanded details in [1].

3 EXPERIMENTS
Experiments are performed in the NovGrid [2] environment us-
ing two 8x8 Minigrid environments as the base environments:
(1) DoorKey a standard environment where an agent must pick
up a key, unlock a door, and navigate to the goal behind that door,
and (2) LavaShortcutMaze, a custom environment where an agent
must navigate a maze that has a pool of lava lining the side of the
maze nearest to the goal. Performance of our method and the base-
lines was evaluated on three novelty types from [2]: LavaProof
which that makes harmful lava harmless, DoorKeyChange which
changes the key that unlocks a door, and LavaHurts which makes
harmless lava harmful (the inverse of LavaProof).

Table 1 shows that pre-novelty, as expected, all three methods
converge in all three novelty scenarios to effectively the same per-
formance. For the DoorKeyChange novelty, DreamerV2 slightly out-
performs WorldCloner in adaptive efficiency, but WorldCloner
is much more efficient in terms of environment interactions. In the
LavaProof novelty condition, in which the agent must detect that
the novelty results in a “shortcut”, DreamerV2 fails to adapt to the
novelty. This is illustrated in Figure 2. We attribute DreamerV2’s
failure to the unique way in which its policy learner depends on
the accuracy of its world model, which leads to overfitting.
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