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ABSTRACT

This paper considers the problem of group fairness in clustering.
We propose a new fairness notion which strictly generalizes exist-
ing notions, and we theoretically analyze the relationships between
several existing notions. Finally, we propose a simple and efficient
greedy round-robin-based algorithm (FRAC𝑂𝐸 ) and extensive ex-
periments to validate its efficacy across multiple datasets.
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1 INTRODUCTION

Fair clustering is an important problem and appears in many situa-
tions [8, 10, 11, 22, 26]. Recommender systems cluster their users
based on their features and provide recommendations based on
the cluster to which a given user is assigned [14]. Suppose the
optimal clustering results in a skewed distribution of the users
from a given protected group. In that case, the algorithm that pro-
vides recommendations, such as job listing based on cluster identity,
may give vastly different recommendations across different groups.
Clustering is used in many other applications with high societal
impact, including facility location[15], job suitability assessments
[23], facial recognition [12, 20], and outlier detection [2, 25].

Motivated by such applications, we revisit the first notion of
fairness (called Balance) introduced by Chierichetti et al. [9] in the
clustering setting. When there are only two groups – advantaged
and disadvantaged, the Balance notion aims to maximize the ratio
of people from the disadvantaged and advantaged groups in each
cluster. A maximally balanced clustering algorithm tries to achieve
ratio same as that present in dataset (called dataset ratio). The
notion of Balancewas generalized by Bera et al. [6] using Minority
Protection (MP) and Restricted Dominance (RD) that provide lower
and upper bounds on data points from each group in every cluster.
Along similar lines, Ziko et al. [33] provides a continuous metric
called Fairness Error (FE) to enable the use of optimization-based
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approaches. There are two major drawbacks. First, the resulting
clusters can be highly skewed. Secondly, the existing algorithms
are computationally complex [6, 7, 24] or require extensive hyper
parameter tuning [1, 5, 19, 21, 31, 32].

This paper introduces a new notion of fairness, called as 𝝉-ratio
fairness and show that satisfying 𝝉-ratio fairness also satisfies the
𝜏 ′-Balance property by establishing the relationship between differ-
ent existing group fairness notions theoretically (See Lemmas 1-4).
The paper then proposes a simple and efficient round-robin-based
algorithm for the 𝝉-ratio that admits 2𝑘−1 (𝛼 + 2)−approximate
solution to fair clustering. Here 𝛼 is the approximation ratio of
vanilla clustering, and 𝑘 is the desired number of clusters. Finally,
through extensive experiments on four datasets, we show the pro-
posed algorithm’s efficacy on fairness and objective cost. Further,
the cost does not grow exponentially with the 𝑘 . As a byproduct,
our algorithm also solves the capacitated clustering with an ideal
cluster size of 𝑛/𝑘 (See [4, 18]) by setting parameters of 𝝉-ratio
fairness to satisfy dataset ratio.

2 THE MODEL

Let 𝑋 ⊆ R𝑑 be a finite set of points that needs to be partitioned
into 𝑘 clusters. A 𝑘-clustering algorithm produces a partition C =

{𝐶 𝑗 }𝑘𝑗=1 of 𝑋 into 𝑘 subsets with centers 𝐶 = {𝑐 𝑗 }𝑘𝑗=1 using an
assignment function 𝜙 : 𝑋 → 𝐶 which maps each point to cor-
responding cluster center. We consider that each point 𝑥𝑖 ∈ 𝑋

is associated with a single protected attribute 𝜌𝑖 (say, gender),
which takes different group values (like male, female) from the
set denoted by [𝑚]. Furthermore, let 𝑑 : 𝑋 × 𝑋 → R+ be a dis-
tance metric that measures the dissimilarity between features. The
vanilla (unconstrained) clustering algorithm minimize the follow-

ing: 𝐿𝑝 (𝑋,𝐶, C, 𝜙)=
(∑

𝐶 𝑗 ∈C
∑
𝑥𝑖 ∈𝐶 𝑗

𝑑 (𝑥𝑖 , 𝑐 𝑗 )𝑝
) 1
𝑝 . The fairness is

measured by a given vector 𝝉={𝜏𝑎}𝑚𝑎=1 with 0 ≤ 𝜏𝑎 ≤ 1
𝑘
∀𝑎 ∈ [𝑚].

If 𝑋𝑎 , 𝑛𝑎 represent data points and the number of points hav-
ing protected attribute value 𝑎 in 𝑋 respectively, then 𝝉-ratio
fairness ensures that each cluster has a predefined fraction of
points for every protected group value, i.e.

∑
𝑥𝑖 ∈𝐶 𝑗

I(𝜌𝑖 = 𝑎) ≥ 𝜏𝑎𝑛𝑎 ,
∀𝐶 𝑗 ∈ C and ∀𝑎 ∈ [𝑚]. Existing discrete group fair notions in-

clude 𝜏-Balance i.e.
(
min𝑎,𝑏∈[𝑚]

(∑
𝑥𝑖 ∈𝐶𝑗

I(𝜌𝑖=𝑎)∑
𝑥𝑖 ∈𝐶𝑗

I(𝜌𝑖=𝑏 )

))
≥ 𝜏 , 𝝉-MP

i.e.,
∑
𝑥𝑖 ∈𝐶 𝑗

I(𝜌𝑖 = 𝑎) ≥ 𝜏𝑎 |𝐶 𝑗 | and 𝝉-RD i.e.,
∑
𝑥𝑖 ∈𝐶 𝑗

I(𝜌𝑖 = 𝑎) ≤
𝜏𝑎 |𝐶 𝑗 |, ∀𝐶 𝑗 ∈ C, 𝑎 ∈ [𝑚]. We now discuss the relationship between
group fair notions with a binary protected attribute (i.e., takes only
two values 𝑎, 𝑏 ∈ [𝑚]).
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Lemma 1. If a cluster 𝐶 𝑗 ∈ C is 𝝉-ratio fair, then it also satis-

fies min𝑎,𝑏
( 𝜏𝑎
1−𝑘𝜏𝑏+𝜏𝑏

𝑛𝑎
𝑛𝑏

)
− Balance. Further when 𝜏𝑎=𝜏𝑏=1/𝑘 in

𝝉-ratio fairness then it is min𝑎,𝑏 (𝑛𝑎/𝑛𝑏 )-Balance clustering.

Lemma2. A fair clustering instance exists which satisfies𝜏 ′-Balance
with 𝜏 ′ > 0 and has arbitrarily low 𝝉-ratio.

Lemma 3. The cluster satisfying both 𝝉 ′-MP and 𝝉-RD ensures

min
(
𝜏 ′𝑎
𝜏𝑏
,
𝜏 ′
𝑏

𝜏𝑎

)
-Balance. Furthermore, satisfying only one of them does

not ensure 𝜏-Balance.

Lemma 4. If a cluster satisfies 𝜏-balance then it is also 𝝉 -MP with

𝝉={ 12 ,
𝜏
1+𝜏 } and 𝝉 -RD with 𝝉={ 1

1+𝜏 ,
1
2 } for {𝑎, 𝑏} respectively.

All the above results prove that 𝝉-ratio is a generalized no-
tion. Thus, we focus on designing an algorithm satisfying 𝝉-ratio
fairness while minimizing objective cost irrespective of 𝑝 .

3 PROPOSED ALGORITHM: FRAC𝑂𝐸

We now propose the algorithm that we call Fair Round-robin
Algorithm for Clustering Over End (FRAC𝑂𝐸 ) in Algorithm 1. Our
post-processing algorithm derives fair clustering on top of vanilla
clustering via a fair assignment procedure described in Algorithm
2. We will now look into the convergence guarantees and objective
cost approximation factors in comparison to optimal cost.

Theorem1. FRAC𝑂𝐸 algorithm results in 2𝑘−1 (𝛼+2)-approximation

to the fair clustering problem for any 𝑘 and 𝝉 .

Proposition 1. There exists an instance with arbitrary centers and

data points on which FRAC𝑂𝐸 achieves 2-approximation factor com-

pared to optimal assignment.

Convergence: FRAC𝑂𝐸 ensures fairness at the end and makes
corrections for every point only once. Thus, given the convergence
of the vanilla clustering ([16, 17]), FRAC𝑂𝐸 converges in finite time.

Algorithm 1: 𝜏-FRAC𝑂𝐸 (𝑋 , 𝑘 , 𝝉 ,𝑚, 𝑝)
1 Let (𝐶,𝜙) be solution to vanilla (𝑘, 𝑝)-clustering.
2 if 𝝉-ratio fairness is met then

3 return (𝐶,𝜙)
4 else

5 return FairAssignment(𝐶,𝑋, 𝑘, 𝜏,𝑚, 𝑝, 𝜙)
6 end

7 end

4 EXPERIMENTAL RESULT AND DISCUSSION

We compare the performance of FRAC𝑂𝐸 against state-of-the-art
(SOTA) on different benchmarking datasets- Adult (Census) [28],
Bank [29], Diabetes [30] and Census-II [27]. The bank dataset has
ternary valued protected group, whereas other have binary valued
group. However, the datasets differ in sizes and number of features.
We show the performance of FRAC𝑂𝐸 on metrics, Objective Cost
𝐿𝑝 (𝑝=2) and 𝜏-Balance. We take vanilla 𝑘-means and 𝑘-median
as our initial clustering algorithms. Further, we consider Vanilla
𝑘-means/𝑘-median, Ziko et al., Backurs et al., Bera et al. as SOTA
baselines. In Ziko et al., we consider two variations - tuned (re-tune

Algorithm 2: FairAssignment(𝐶 , 𝑋 , 𝑘 , 𝝉 ,𝑚, 𝑝 , 𝜙)

1 Fix a random center ordering and 𝜙 (𝑥𝑖 ) ← 0 ∀𝑥𝑖 ∈ 𝑋 .
2 for ℓ ← 1 to𝑚 do

3 for 𝑡 ← 1 to 𝜏𝑎𝑛𝑎 do

4 for 𝑗 ← 1 to 𝑘 do

5 𝜙 (argmin
𝑥𝑖 ∈𝑋𝑎 :𝜙 (𝑥𝑖 )=0 𝑑 (𝑥𝑖 , 𝑐 𝑗 )) = j

6 end

7 end

8 For all 𝑥𝑖 ∈ 𝑋𝑎 such that 𝜙 (𝑥𝑖 ) = 0, set 𝜙 (𝑥𝑖 ) = 𝜙 (𝑥𝑖 )
9 end

10 Recompute centers 𝐶 with respect to new allocation 𝜙 .
11 return (𝐶,𝜙).

hyper-parameters) and untuned (hyper-parameter value same as
reported in [33]). Results are average and standard deviation over
10 independent trials. The code is available publicly [13].

Figure 1: The plot shows evaluation metrics over varying 𝑘

for 𝑘-means setting on adult dataset (dataset ratio 0.49).

We analyze different approaches on varying 𝑘 for 𝜏={1/𝑘}𝑚
𝑎=1.

The results obtained are plotted in Fig. 1 for 𝑘=2, 5, 10, 15, 20, 30, and
40 on adult dataset. The complete results on fixed and varying 𝑘 for
𝑘-means/𝑘-median are available in arXiv version [13]. We further
check if initial center ordering in Fair Assignment procedure is
a critical factor in deciding objective cost. We observe cost over
100 random permutations of 𝑘 (=10)-means centers that FRAC𝑂𝐸 is
center invariant. We further report results for FRAC𝑂𝐸 on general
𝝉 vector [13]. The runtime of vanilla, FRAC𝑂𝐸 , Bera et al., Ziko
et al. (with tuning) and Ziko et al. (without tuning) are 11.8, 11.55,
188.98, 1310.61 and 15.9 respectively. Thus, FRAC𝑂𝐸 can handle
fairness with a better cost at considerably less runtime.

5 DISCUSSION

In this paper, a novel 𝝉-ratio fairness notion that generalizes
existing notion is proposed. We convert fair clustering into a fair
assignment problem and propose a simple, efficient round-robin
algorithm. We theoretically show cost approximation guarantees.
We also provide the relationship between all the discrete group
fair notions. Immediate future direction includes tackling multiple
protected attributes, and achieving individual and group fairness
together.
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