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ABSTRACT
Schelling’s model considers 𝑘 types of agents each of whom needs

to select a vertex on an undirected graph, where every agent prefers

neighbor agents of the same type. We are motivated by a recent

line of work that studies solutions that are optimal with respect

to notions related to the welfare of the agents. We explore the

parameterized complexity of computing such solutions. We focus

on the well-studied notions of social welfare and Pareto optimality,

alongside the recently proposed notions of group-welfare optimality

and utility-vector optimality.
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1 INTRODUCTION
Residential segregation is a phenomenon that is observed in many

residential areas around the globe. As a result of de-facto segrega-

tion, people group together forming communities based on traits

such as race and ethnicity, and residential areas become notice-

ably divided into segregated neighborhoods. Half a century ago,

Schelling [18] proposed a simple agent-based model to study how

residential segregation emerges from individuals’ perceptions.

At a high level, Schelling’s model works as follows. There are

two types of agents, say red and blue, each of whom is placed on a

unique node on a graph. Agents are aware of their neighborhood;

agents of the same type are considered “friends” and those of the

opposite type “enemies”. An agent is happy with their location if

and only if the fraction of friends in their neighborhood is at least

𝜏 , where 𝜏 ∈ [0, 1] is a tolerance parameter. Schelling proposed a

random process that starts from a random initial assignment and

agents who are unhappy in their current neighborhood relocate

to a different, random, empty node, whilst happy agents stay put.

It is expected that when agents are not tolerant towards a diverse

neighborhood, 𝜏 > 1

2
, these dynamics will converge to a segregated

assignment. However, Schelling’s experimentation on grid graphs

showed that even when agents are in favour of integration, i.e.

𝜏 ≈ 1

3
, the final assignment will be segregated.
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Since Schelling’s model was proposed, his work has been the

subject of many empirical studies in sociology [10], in econom-

ics [19, 20], and more recently in computer science. For exam-

ple Barmpalias et al. [2, 3, 4, 5] and Immorlica et al. [14] analyze

Schelling’smodel on a grid graphwith its original randomdynamics.

A different line of work studies Schelling games, such as [1, 6, 15, 17]

and there are many variations of this [7, 9, 13, 16].

More recently, Bullinger et al. [8] studied assignments with cer-

tain welfare guarantees for the agents and the computational com-

plexity of computing them. In Schelling’s model high social welfare

translates to high segregation. However, there are certain scenar-

ios where segregation essentially captures the effectiveness of an

allocation of agents over a network. As an example, think of the

nodes of the graph as the resources of an organization, the edges

as compatibility and interference between the resources, and the

types of agents as different working groups, or skilled workers.

Under this point of view, “segregation” is desirable, since we have

better utilization of both the available workers and resources. For

this reason, the welfare guarantees studied by [8] are the focus of

this paper, albeit under the prism of parameterized complexity.

In parameterized algorithmics [11], the running-time of an al-

gorithm is studied with respect to a parameter 𝑘 ∈ N0 and input

size 𝑛. The most favorable outcome is an FPT (fixed-parameter

tractable) algorithm, running in time 𝑓 (𝑘) · 𝑛O(1)
, where 𝑓 is a

computable function. A less favorable, but still positive, outcome is

an XP algorithm, which is an algorithm running in time O(𝑛𝑓 (𝑘) ).
Finally, showing that a problem is W[1]-hard rules out the exis-

tence of an FPT algorithm under the well-established assumption

that W[1] ≠ FPT.

2 MODEL
Given two vectors x, y of length 𝑛, we say that x weakly dominates

y if x(𝑖) ≥ y(𝑖) for every 𝑖 ∈ [𝑛]; x strictly dominates y if at least

one of the inequalities is strict.

A Schelling instance ⟨𝐺,𝐴⟩, consists of an undirected graph 𝐺 =

(𝑉 , 𝐸) and a set of agents 𝐴, where |𝐴| ≤ |𝑉 |. Every agent has a

type, or color. When there are only two colors available, we assume

that 𝐴 = 𝑅 ∪ 𝐵, where 𝑅 contains red agents and 𝐵 contains blue

agents. We denote 𝑟 = |𝑅 | and 𝑏 = |𝐵 |. Agents 𝑖 and 𝑗 are friends

if they have the same color; otherwise, they are enemies. For any

agent 𝑖 ∈ 𝐴 we use 𝐹 (𝑖) to declare the set of his friends.

An assignment v = (𝑣 (1), . . . , 𝑣 ( |𝐴|)) for the Schelling instance
⟨𝐺,𝐴⟩ maps every agent in 𝐴 to a vertex 𝑣 ∈ 𝑉 , such that every

vertex is occupied by at most one agent. Here, 𝑣 (𝑖) ∈ 𝑉 is the vertex

of𝐺 that agent 𝑖 occupies. For any assignment v and any agent 𝑖 ∈ 𝐴,

𝑁𝑖 (v) denotes the set of neighbors of 𝑣 (𝑖) ∈ 𝑉 that are occupied

under v. Let 𝑓𝑖 (v) = |𝑁𝑖 (v)∩𝐹 (𝑖) | and let 𝑒𝑖 (v) = |𝑁𝑖 (v) |− 𝑓𝑖 (v) be
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respectively the numbers of neighbors of agent 𝑖 who are his friends

and his enemies under v. The utility of agent 𝑖 under assignment v,
denoted 𝑢𝑖 (v), is 0 if |𝑁𝑖 (v) | = 0, and is defined as

𝑢𝑖 (v) =
𝑓𝑖 (v)
|𝑁𝑖 (v) |

=
𝑓𝑖 (v)

𝑓𝑖 (v) + 𝑒𝑖 (v)
if |𝑁𝑖 (v) | ≠ 0. The social welfare of v is the sum of the utilities of all

agents, formally SW(v) = ∑
𝑖∈𝐴 𝑢𝑖 (v). For 𝑋 ∈ {𝑅, 𝐵} we denote

SW𝑋 (v) = ∑
𝑖∈𝑋 𝑢𝑖 (v).

We use u(v) to denote the vector of length |𝐴| that contains the
utilities of the agents under v, sorted in non-increasing order. Simi-

larly, let u𝑋 (v) denote the corresponding vector of utilities of the
agents in 𝑋 ∈ {𝑅, 𝐵}. An assignment v is utility-vector dominated

by v′ if u(v′) strictly dominates u(v); v is group-welfare dominated

by v′ if SW𝑋 (v′) ≥ SW𝑋 (v), where 𝑋 ∈ {𝑅, 𝐵}, and at least one

of the inequalities is strict. An assignment v is:

• welfare optimal, denoted WO, if for every other assignment

v′ we have SW(v) ≥ SW(v′);
• Pareto optimal, denoted PO, if and only if there is no v′ such
that u𝑋 (v′) weakly dominates u𝑋 (v) for 𝑋 ∈ {𝑅, 𝐵} and at

least one of the dominations is strict;

• utility-vector optimal, denoted UVO, if it is not utility-vector

dominated by any other assignment;

• group-welfare optimal, denotedGWO, if it is not group-welfare

dominated by any other assignment;

• perfect, denoted Perfect, if every agent gets utility 1.

The notions UVO and GWO were introduced by Bullinger et al. [8]

where the following were proven.

Proposition 1. If an assignment v is WO, then it is UVO, GWO,

and PO. If v is UVO or GWO, then it is PO.

Observation 1. If Schelling instance ⟨𝐺,𝐴⟩ admits a Perfect as-

signment, then every PO assignment is Perfect.

In this paper we study the complexity of 𝜙-Schelling, where 𝜙 ∈
{WO, PO,GWO,UVO, Perfect}. In other words, given a Schelling

instance ⟨𝐺,𝐴⟩, we study the problem of finding an assignment v
satisfying the given optimality notion.

3 OUR RESULTS
A full version containing all proofs can be found in [12].

3.1 Two Types
Theorem 2. Assuming P ≠ NP, there is no poly-time algorithm

for 𝜙-Schelling, for 𝜙 ∈ {WO, PO,UVO,GWO}, even when 𝑏 = 1.

On the positive side, we can easily get an XP algorithm for Perfect-

Schelling parameterized by 𝑏.

Theorem 3. For Perfect-Schelling there is an XP-algorithm pa-

rameterized by 𝑏.

Theorem 4. Deciding whether a Schelling instance admits a per-

fect assignment is W[1]-hard when parameterized by 𝑟 + 𝑏.

Since we show that the problem is hard, the XP-algorithm from

Theorem 3 is actually the best we can hope for. The combination of

Theorem 4, Proposition 1, and Observation 1, gives us the following

corollary.

Corollary 5. There is no FPT algorithm for 𝜙-Schelling when

parameterized by 𝑟 +𝑏, for 𝜙 ∈ {Perfect,WO, PO,UVO,GWO}, unless
FPT = W[1].

In light of these negative results, we turn our attention to in-

stances where the structure of 𝐺 is restricted.

Theorem 6. Assuming P ≠ NP, there is no poly-time algorithm

for WO-Schelling and GWO-Schelling on cubic graphs, even if

𝑟 + 𝑏 = |𝑉 |.
Theorems 4 and 6 show that we cannot hope for an efficient

algorithm, at least for WO and GWO, just by parameterizing only

by 𝑟 + 𝑏 or only by the maximum degree Δ. We complement this

with the following result.

Theorem 7. There is an FPT parameterized by 𝑟 + 𝑏 + Δ for

𝜙-Schelling, for every 𝜙 ∈ {WO, PO,UVO,GWO}. Moreover, 𝜙-

Schelling admits a kernel with at most O(Δ2 ·𝑟2 ·𝑏2) many vertices.

3.2 Multiple types
Now, we depart from the standard model and study Schelling in-

stances with multiple types, denoted SchellingM.

Theorem 8. Let G be an arbitrary class of connected graphs that

contains at least one graph of size 𝑠 for every 𝑠 ∈ N. Deciding whether
a Schelling instance with multiple types admits a perfect assignment

is NP-hard and W[1]-hard when parameterized by agent-types, even

when every connected component of 𝐺 is in G.

Corollary 9. Deciding whether a Schelling instance withmultiple

types admits a perfect assignment is NP-hard andW[1]-hard when

parameterized by agent-types, even if 𝐺 is a tree.

Again, using Proposition 1 and Observation 1, we can get the

following corollary.

Corollary 10. For every 𝜙 ∈ {WO, PO,UVO,GWO}, assuming

P ≠ NP, there is no polynomial time algorithm for 𝜙-SchellingM

even when 𝐺 is a tree. Moreover, assuming FPT ≠ W[1], there is no
FPT algorithm for 𝜙-SchellingM parameterized by agent-types, even

when 𝐺 is a tree.

The following result provides an algorithm for 𝜙-SchellingM

that matches the lower bound from Corollary 10.

Theorem 11. There is an |𝐴|O(𝑘 ·tw(𝐺)) · |𝑉 (𝐺) | time algorithm

for𝜙-SchellingM,𝜙 ∈ {WO, PO,GWO,UVO}, where𝑘 is the number

of agent-types.

It then follows from the running time of the algorithm that

SchellingM is actually FPT when parameterized by treewidth plus

the number of agents.

Corollary 12. There is an FPT algorithm for 𝜙-SchellingM

when parameterized by treewidth and the number of agents, for every

𝜙 ∈ {WO, PO,GWO,UVO}.
Finally, while Corollary 10 implies that we cannot obtain an FPT

algorithm if the number of agent-types is part of the parameter, we

can point out a specific case that can be solved in FPT time with a

very minor modification of our algorithm.

Corollary 13. When the number of types is constant, Perfect-

SchellingM admits an FPT algorithm parameterized by treewidth.
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