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ABSTRACT
Gerrymandering is a commonway to externally manipulate district-

based elections where the electorate is (artificially) redistricted with

an aim to favour a particular political party to win more districts in

the election. Formally, given a set of𝑚 possible locations of ballot

boxes and a set of 𝑛 voters (with known preferences) is it possible

to choose 𝑘 specific locations for the ballot boxes so that the desired

candidate wins in at least 𝑙 of them? Lewenberg et al. [AAMAS ’17]

and Eiben et al. [AAAI ’20] studied the classical and fine-grained

complexity (respectively) of the gerrymandering problem.

In recent years, the research direction of studying the algorithmic

implications of introducing fairness in computational social choice

has been quite active. Motivated by this, we define two natural

fairness conditions for the gerrymandering problem and design

a near-optimal algorithm. Our two new conditions introduce an

element of fairness in the election process by ensuring that:

• the number of voters at each ballot box is not unbounded,

i.e., lies in the interval [lower, upper] for some given pa-

rameters lower, upper
• the margin of victory at each ballot box is not unbounded, i.e.,

lies in the interval [marginlow, marginup] for some given

parameters marginlow, marginup
For the real-life implementation of redistricting, i.e., when voters

are located in R2, we obtain the following upper and lower bounds

for this fair version of the gerrymandering problem:

• There is an algorithm running in (𝑚+𝑛)𝑂 (
√
𝑘 ) ·|C| (upper+lower+

marginup+marginlow ) time where C is the set of candidates par-

ticipating in the election.

• Under the Exponential Time Hypothesis (ETH), we obtain

an almost tight lower bound by ruling out algorithms run-

ning in 𝑓 (𝑘, 𝑛, upper, lower) ·𝑚𝑜 (
√
𝑘 )

time where 𝑓 is any

computable function. The lower bound holds even when

marginlow = 1 = marginup, 𝑘 = 𝑙 and there are only 2

candidates.
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1 INTRODUCTION
Elections are a fundamental process in our lives: a group of agents

vote according to their individual preferences to select a final out-

come from a given set of outcomes. Given the high stakes, it is highly

important to preserve the sanctity of an election from manipula-

tion by either internal or external sources. Seminal results [15, 24]

showed that most standard voting rules are susceptible to (internal)

manipulation: the outcome of the election can be changed signifi-

cantly even if one agent votes differently from their true preference!

To add to the bad news, there is evidence [9] from economics and

political science that many of the voting systems used in real life

actually incentivise voters to deviate from their true preferences.

A series of highly-influential papers [1–3] initiated the study of

manipulation in various different voting scenarios from the view-

point of computational complexity: given that (internal) manipula-

tion is possible [15, 24] how easy or hard is to actually achieve a

specific outcome in a given voting system? We refer the interested

reader to [5, 12–14] for more information about this active area of

research in computational social choice.

Internal manipulation is typical of the form where a coalition

of voters strategically votes (often different from their true prefer-

ences) to ensure the victory (or loss) of a specific candidate [5][Chapter

6]. External manipulation on the other hand asks whether an agent

who is not even participating in the election can still manipulate

it in a way to ensure the victory (or loss) of a specific candidate.

This can be achieved in various different ways: adding or remov-

ing voters or candidates [5][Chapter 7.3], bribing voters to change

their preferences [5][Chapter 7.4], redistricting in district-based

elections [11, 18], etc. In this paper, we focus on election manipula-

tion by redistricting in district-based elections. An axiomatic study

of Gerrymandering was introduced in [23]. A notion of fairness

in the context of gerrymandering was introduced in [22]. Their

fairness criteria ensure the proportion of voters remains the same

after redistricting.

1.1 Our Model: Fairness to combat
Gerrymandering

In this paper, we impose the following two fairness rules with a

view towards preserving the sanctity of the voting mechanism:

• The number of voters at each of the ballot boxes is bounded

i.e. ≤ upper and ≥ lower.
• The margin on victory at each of the ballot boxes is also

bounded i.e. ≤ marginup and ≥ marginlow.
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We bound the number of voters at each of the ballot boxes in

order to avoid the demography corresponding to each of the ballot

boxes being skewed. On the other hand, the margin of victory is

an important parameter to ensure fairness in voting. It is often

noticed that the prediction of the exit poll varies widely with the

real outcome of the voting. One of the main reasons behind this is

the occurrence of different malpractices like bribery and rampant

rigging at the time of voting. The “margin of victory" parameter

inhibits these malpractices to some extent by increasing the chances

of recounting or in some cases re-polling if it is found after the

election result that the margin of victory exceeds the boundaries.

This parameter is also being used to measure the number of votes

that would need to change with an aim to alter a parliamentary

outcome for single-member preferential electorates. Various earlier

works [4, 8, 20, 25] showed how to compute the margin of victory

for different voting rules and draw its impact in the real scenario.

Here we study the impact of the above fairness rules on gerry-

mandering. Additionally, we also impose the standard condition

that a voter cast their vote at the ballot box located nearest to

her. More specifically, we study the following problem (we call it

“Fair-Gerrymandering") defined as follows.

Fair-Gerrymandering-(X, 𝜌)
Input: A set of candidates C, a set V of 𝑛 voters located

at points in X whose preferences are known, a set B of𝑚

possible ballot box locations in X and a specific candidate

“OUR" ∈ C
Parameters: 𝑘, 𝑙,𝑚, 𝑛, upper, lower, marginlow, marginup
Assumptions:

• Each voter votes at the ballot box nearest to them,

where distances are calculated using the metric 𝜌 .

• The plurality rule is used: each voter votes for their

top-ranked candidate, and a ballot box is won by the

candidate who secures the most votes. No ties.

• The number of voters voting for a candidate at every

ballot box is bounded i.e., ≤ upper and ≥ lower.
• The margin of victory at every ballot box is ≤
marginup and ≥ marginlow.

Question: Is there a set P ⊆ B such that 𝑘 = |P | such that

opening ballot boxes at locations in P then “OUR" candidate

wins at least 𝑙 of the ballot boxes for some 𝑙 ≤ 𝑘 ≤ 𝑚.

1.2 Our Results
In this paper, we initiate the study of the algorithmic complexity of

the Fair-Gerrymandering problem. On the algorithmic side, we

obtain the following result:

Theorem 1. If C is the set of candidates in an election, 𝑛 is the

number of voters and𝑚 is the number of possible ballot box locations

in the plane, then Fair-Gerrymandering-

(
R2, ℓ2

)
is solvable in time

(𝑚 + 𝑛)O(
√
𝑘 ) · |C| (upper+lower+marginup+marginlow ) where 𝑘 is the

number of ballot boxes for the election.

A brute-force search for a solution will run in𝑚𝑘𝑛𝑂 (1)
. Clearly,

our algorithm is more efficient than an exhaustive search. We com-

plement this algorithm with an almost-matching lower bound:

Theorem 2. For any 𝑑 ≥ 2, under the Exponential Time Hypoth-

esis (ETH), the Fair-Gerrymandering-

(
R𝑑 , 𝜌) problem cannot be

solved in 𝑓 (𝑘, 𝑛, upper, lower) ·𝑚𝑜 (𝑘1−1/𝑑 )
time where 𝑓 is any com-

putable function, 𝑛 is the number of voters, and 𝑘 is the number of

the ballot boxes opened,𝑚 is the total number of possible locations of

ballot boxes and 𝜌 is either the ℓ∞-metric or the ℓ𝑞-metric for some

𝑞 ≥ 1. This lower bound holds even when there are only 2 candidates,

𝑘 = 𝑙 and marginlow = 1 = marginup.

Recall that the Exponential Time Hypothesis (ETH) is a standard

assumption [19] in parameterized complexity theory which states

that the 3-SAT problem cannot be solved in 2
𝑜 (𝑁 )

time where 𝑁 is

the number of variables [16, 17].

Note that since 1 ≤ lower ≤ upper ≤ 𝑛, the terms lower and
upper are redundant in the first term of the claimed lower bound for

the running time in Theorem 2. However, we have chosen to include

them here for the sake of completeness so that the involvement

of each of the four fairness parameters (lower, upper, marginlow,
marginup) in Theorem 2 is explicitly clear.

Comparison of our results & techniques to [10]:
Eiben et al. [10] studied the “vanilla” version, i.e., without any

fairness constraints, of the Gerrymandering-(R2, ℓ2) problem.

Note that this “vanilla” version of the Gerrymandering problem,

i.e., the Gerrymandering-

(
X, 𝜌) problem studied in [10], is a spe-

cial case of the Fair-Gerrymandering-

(
X, 𝜌) problem with the

following “extreme” values of some of the parameters:

• marginlow = 1 and marginup = 𝑛

• lower = 0 and upper = 𝑛

Eiben et al. [10] designed an (𝑚+𝑛)𝑂 (
√
𝑘 )

algorithm along with a

lower bound of 𝑓 (𝑘, 𝑛) ·𝑚𝑜 (
√
𝑘 )

under ETH.We now briefly compare

our results & techniques to those of Eiben et al. [10]:

Algorithmic result. The key idea of our algorithm lies in using

the well-known separator theorem of Voronoi diagrams by Marx

and Pilipczuk [21] in a recursive way. The non-trivial part of the

technique comes from the efficient handling of partial solutions.

At each step of the recursion, we combine partial solutions from

the lower level. As we don’t know how the final solution will look

like we may cut a district several times into smaller pieces during

the recursion. We maintain possible solutions for all such pieces

to compute the final district partitioning, ensuring the fairness

criteria.

Lower bound. Our reduction is similar to that of [10] for the

“vanilla” version of Gerrymandering, but reducing from the (𝑘 ×𝑘)-
Grid-Tiling-≥ version of the problem (instead of (𝑘 × 𝑘)-Grid-
Tiling as done in [10]) helps us to simplify some of the arguments.

Further, we are able to generalise our reduction which works well

for any metric ℓ𝑑𝑞 where 1 ≤ 𝑞 ≤ ∞ and 𝑑 are arbitrary. This

reduction is from the 𝑑-dimensional ≥-CSP problem which has

been recently used to show lower bounds for various problems

in computational geometry [6, 7]. Note that if we set 𝑘 = 𝑙 and

marginlow = 1 = marginup in the reduction, it implies that our

desired candidate has to win each ballot box by exactly one vote.

For the other two parameters, we only need to use the naive bounds

1 ≤ lower ≤ upper ≤ 𝑛.
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