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ABSTRACT
Although great success has been made in automated negotiation, a
major issue still stands out: it is inefficient that learning a policy
from scratch when an agent encounters an unknown opponent.
Transfer learning (TL) can alleviate this problem by utilizing the
knowledge of previously learned policies to accelerate the cur-
rent task learning. This work presents a novel Transfer Learning-
based Negotiating Agent (TLNAgent) framework that allows an
autonomous agent to transfer previous knowledge from source
policies to help with new tasks, while boosting its performance. TL-
NAgent comprises three key components: the negotiation module,
the adaptation module and the transfer module. Specifically, the
negotiation module is responsible for interacting with the other
agent during negotiation. The adaptation module measures the
helpfulness of each source policy based on a fusion of two selection
mechanisms. The transfer module is based on lateral connections
between source and target networks and accelerates the agent’s
training by transferring knowledge from the selected source policy.
Our comprehensive experiments clearly demonstrate that TL is
effective in the context of automated negotiation, and TLNAgent
outperforms state-of-the-art negotiating agents in various domains.
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1 INTRODUCTION
In automated negotiation, autonomous agents attempt to reach a
joint agreement on behalf of human negotiators in a buyer-seller
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or consumer-provider setup [13, 27, 42]. The biggest driving force
behind research into automated negotiation is arguably the aug-
mentation of the abilities of human negotiators as well as the broad
spectrum of potential applications in industrial and commercial
domains [e.g., 12, 18, 33, 44]. The interaction framework enforced
in automated negotiation lends itself to the use of machine learn-
ing techniques for exploring effective strategies. Inspired by ad-
vances in deep learning [8, 17, 22, 36] and reinforcement learning
(RL) [16, 20, 39, 46], the application of deep RL on negotiation has
made significant success [2, 4, 7, 8, 11, 25, 43]. However, all these
methods need to learn from scratch when faced with new oppo-
nents, which is inefficient and impractical.

The existing works mainly focus on how to use the gained
experience to train an agent to deal with the encountered oppo-
nents [1, 2, 5, 6, 9, 25, 35, 43]. In practice, the agent however may be
faced with unfamiliar or unknown opponent strategies, in which
its policy may be ineffective, and the agent thus needs to learn a
new policy from scratch [21, 23, 30]. Besides, in most negotiation
settings, agents are required to negotiate with multiple types of op-
ponents in turn which may be unknown [3, 19, 31, 41]. The problem
behind it is that learning in such a manner is time-costly and may
also restrict its potential performance (e.g., ignoring all previous ex-
perience and learned policies that are relevant to the current task).
So, a core question arises: how to accelerate the learning process of
new opponent strategy, while improving the performance of the
learned policy.

This paper describes an attempt to answer the question with
transfer learning (TL), which has emerged as a promising technique
to accelerate the learning process of the target task by leveraging
prior knowledge [10, 28, 32, 38, 48]. We propose a novel TL-based
negotiating agent called TLNAgent, which is the first framework
to apply TL in automated negotiation. It comprises three key com-
ponents: the negotiation module, the adaptation module, and the
transfer module. The negotiation module is responsible for interact-
ing with other agents in the negotiation and providing information
for other modules. The adaptation module measures the helpfulness
of the source task concurrently based on two metrics: similarity
between the source opponents and the current opponent, as well
as the specific performance of the source policies on the target
task [14, 24, 34, 47]. The transfer module is the core of our agent
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framework, which accelerates the agent’s training utilizing the
source policies that the adaptation module selects. The comprehen-
sive experiments conducted in the work clearly demonstrate the
effectiveness of TLNAgent.

2 TRANSFER LEARNING BASED AGENT
To enable the agent to reuse the learned knowledge and learn how
to deal with new opponents, we firstly propose theTransfer Learn-
ing Based Agent For Automated Negotiation framework (See
Figure 1). The framework is composed of three modules: negotia-
tion module, adaptation module, and transfer module. Through the
cooperation of three modules, the framework can accelerate the
learning process when encountering a new opponent and improve
the learned policy performance [15, 26, 37, 45]. Our framework
performs much better than traditional methods based on RL, which
will be validated in our experiments.

Figure 1: An overview of our framework

Negotiation Module is used to interact with other negotiating
agents (e.g., receiving offers from opponents, generating counter-
offers and making acceptance/rejection decisions). It also provides
the necessary information for the adaptation and transfer module.

Adaptation Module decides when and which source policies
are more appropriate to be transferred in the current task. To mea-
sure the transferability of each source policy, we propose two eval-
uation metrics: (a) performance metric, which represents the
specific performance of the source policy on the target task, (b)
similarity metric, which measures the similarity between the
source opponents and the current opponent. Both evaluation met-
rics need the negotiation module to provide the necessary informa-
tion. Subsequently, weighting factors resulting from the evaluation
are passed to the transfer module.

Transfer Module is used to accelerate the learning process and
boost performance encountering new opponents. After the adap-
tation module generates the weight factors, the transfer module
extracts useful knowledge from source policies based on lateral con-
nections [29, 40, 47], and then makes decisions for the negotiation
module to obtain feedback. In this way, the transfer module allows
our agent to leverage useful knowledge to learn a high-performing
policy in the current environment.

3 EXPERIMENTS
Environments: To verify the efficient learning ability of TLNAgent
for previously unknown opponents, we evaluate the agent with
multiple tasks consisting of different opponents and domains. The
following two transfer metrics are used in experiments:
(1) Time to threshold benchmark: the learning time TLNAgent and

baselines required to achieve the convergence performance in

a negotiation, which is denoted by the ratio of the convergence
episode number and the total episode number;

(2) Transfer ratio: the ratio of mean utility obtained by the agent ne-
gotiating with a certain opponent over all 18 domains between
TLNAgent and the learn from scratch baseline.
Baselines: To demonstrate the advantages of using previous

knowledge and the superiority of the transfer method when faced
with new opponents, we consider the following two baselines:

• Learn from scratch, which uses the standard DRL algorithm
SAC and learns without prior knowledge in the new negoti-
ation environment;

• Learn from teachers, which is directly trained by the oppo-
nents that are used to train the source policies.
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Figure 2: Performance of TLNAgent and Learn from scratch
on time to threshold benchmark and transfer ratio bench-
mark.

Figure 2a compares results of TLNAgent and other baselines on
the time to threshold benchmark. As we can see, the TLNAgent
converges faster than Learn from scratch in the face of different
opponents. This means that the transfer module accelerates the
agent’s training utilizing the source policy that the adaptation
module selects. As shown in Figure 2b, TLNAgent performs better
for all opponents, achieving a 26% improvement in average utility
compared to the two baselines. This is because TLNAgent transfers
helpful knowledge from multiple source policies to the target task
learning process through the transfer module.

4 CONCLUSION AND FUTUREWORK
In this paper, we introduced a novel transfer learning based negoti-
ating agent framework called TLNAgent for effective and efficient
automated negotiation. The framework contains three components:
the negotiation module, the adaptation module and the transfer
module. Furthermore, the framework adopts the performance met-
ric and the similarity metric to measure the transferability of the
source policies. The experimental results show a clear performance
advantage of TLNAgent over available state-of-the-art agents (cho-
sen from previous editions of ANAC competitions) in various as-
pects. TLNAgent opens several new research avenues, amongwhich
we consider the following as the most promising. First, as opponent
modeling is another helpful way to improve the efficiency of a ne-
gotiation, it’s worthwhile investigating how to combine opponent
modeling techniques with our framework. Also, it is very interest-
ing to see how well TLNAgent performs against human negotiators.
The third important avenue we see is to enlarge the scope of the
proposed framework to concurrent negotiations.
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