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ABSTRACT
We contribute to the recent endeavor of investigating residential

segregation models with realistic agent behavior by studying Jump

Schelling Gameswith agents having a single-peaked utility function.

In such games, there are empty nodes in the graph and agents can

strategically jump to such nodes to improve their utility.
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1 INTRODUCTION
Residential segregation [20], i.e., the emergence of regions in met-

ropolitan areas that are homogeneous in terms of ethnicity or socio-

economic status of its inhabitants, has been widely studied by social

scientists, mathematicians and, recently, also by computer scientists.

Segregation has many negative consequences for the inhabitants

of a city, for example, it negatively impacts their health [1].

The causes of segregation are complex and range from discrimi-

natory laws to individual action. In Schelling’s classical agent-based

model for residential segregation [17, 18] two types of agents, placed

on a path or a grid, act according to the following threshold be-

havior: agents are content with their current position if at least a

𝜏-fraction of neighbors, with 𝜏 ∈ (0, 1), is of their own type. Other-

wise, they want to move, either via swapping with another random

discontent agent or via jumping, to an empty position.

Schelling’s model recently gained traction within Algorithmic

Game Theory, Artificial Intelligence, and Multi-Agent Systems [2–4,

7–10, 13, 14]. Most of these papers are in line with the assumptions

made by Schelling and incorporate monotone utility functions,
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i.e., the agents’ utility is monotone in the fraction of same-type

neighbors. However, recent sociological surveys [19] show that

people actually prefer to live in diverse rather than segregated

neighborhoods
1
. Based on these observations, different models in

which agents prefer integration have been proposed [16, 21, 22].

Very recently Bilò et al. [3] introduced and analyzed the Single-

Peaked Swap Schelling Game, where agents have single-peaked

utility functions and pairs of agents can swap their locations if

this is beneficial for both of them. We now take the natural next

step and investigate the Jump Schelling Game, where agents can

improve their utility by jumping to empty locations, assuming

realistic agents having a single-peaked utility function.

Model. We consider a strategic game played on an undirected,

connected graph 𝐺 = (𝑉 , 𝐸). A Single-Peaked Jump Schelling Game
(𝐺, 𝑟, 𝑏,Λ), called the game, is defined by a graph𝐺 , a pair of positive

integers with 𝑟 ≥ 1 and 1 ≤ 𝑏 ≤ 𝑟 and a peak Λ ∈ (0, 1). There are
two types of agents, which we associate with the colors red and

blue. We have 𝑟 red agents and 𝑏 ≤ 𝑟 blue agents. For an agent 𝑖 , let

𝑐 (𝑖) be her color. An agent’s strategy is her position 𝑣 ∈ 𝑉 on the

graph. Each node can only be occupied by at most one agent. The

𝑛 = 𝑟 +𝑏 strategic agents occupy a strict subset of the nodes in𝑉 , i.e.,

there are 𝑒 = |𝑉 | −𝑛 ≥ 1 empty nodes. A strategy profile 𝜎 ∈ 𝑉𝑛
is a

vector of 𝑛 distinct nodes in which the 𝑖-th entry 𝜎 (𝑖) corresponds
to the strategy of the 𝑖-th agent. For convenience, we use 𝜎−1

as a

mapping from a node 𝑣 ∈ 𝑉 to the agent occupying 𝑣 or ⊖ if 𝑣 is

empty. The set of empty nodes is ∅(𝜎) = {𝑣 ∈ 𝑉 | 𝜎−1 (𝑣) = ⊖}.
For an agent 𝑖 , we define 𝐶𝑖 (𝜎) = {𝑣 ∈ 𝑉 \ ∅(𝜎) | 𝑐 (𝜎−1 (𝑣)) =

𝑐 (𝑖)} as the set of nodes occupied by agents of the same color in 𝜎 .

The closed neighborhood of an agent 𝑖 in a strategy profile 𝜎 is

𝑁 [𝑖, 𝜎] = {𝜎 (𝑖)} ∪ {𝑣 ∈ 𝑉 \ ∅(𝜎) | {𝑣, 𝜎 (𝑖)} ∈ 𝐸}. The agents care
about the fraction 𝑓𝑖 (𝜎) of agents of their own color, including them-

selves, in their closed neighborhood where 𝑓𝑖 (𝜎) = |𝑁 [𝑖,𝜎 ]∩𝐶𝑖 (𝜎 ) |
|𝑁 [𝑖,𝜎 ] | .

Observe that we have 𝑓𝑖 (𝜎) > 0 for any agent 𝑖 , since 𝜎 (𝑖) ∈ 𝑁 [𝑖, 𝜎].
Also, we emphasize that our definition of 𝑓𝑖 (𝜎) deviates from simi-

lar definitions in related work [2, 9, 10, 13]. Similar to Bilò et al. [3],

1
Respondents (on average 78% white) were asked what they think of “Living in a

neighborhood where half of your neighbors were blacks?”. A clear majority, e.g. 82%

in 2018, responded “strongly favor”, “favor” or “neither favor nor oppose”.
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the key idea of our definition is that agents contribute to the diver-

sity of their neighborhood, i.e., they actively strive for integration.

We think that this best captures the single-peaked setting.

The utility of an agent 𝑖 is 𝑈𝑖 (𝜎) = 𝑝 (𝑓𝑖 (𝜎)), with 𝑝 being an

arbitrary single-peaked function with peak Λ ∈ (0, 1) and the

following properties: (1) 𝑝 (0) = 0 and 𝑝 (𝑥) is strictly monotonically

increasing on [0,Λ], (2) for all 𝑥 ∈ [Λ, 1] it holds that 𝑝 (𝑥) =

𝑝 ( Λ(1−𝑥 )
1−Λ ). W.l.o.g., we further assume that 𝑝 (Λ) = 1.

An agent can change her strategy by performing a jump, i.e., to
choose an empty node 𝑣 ∈ ∅(𝜎) as new location. We denote the

resulting strategy profile after a jump of agent 𝑖 to a node 𝑣 as 𝜎𝑖𝑣 . A

jump is improving, if𝑈𝑖 (𝜎) < 𝑈𝑖 (𝜎𝑖𝑣). A strategy profile𝜎 is a (pure)

Nash Equilibrium (NE) if and only if there are no improving jumps,

i.e., for all agents 𝑖 and nodes 𝑣 ∈ ∅(𝜎), we have𝑈𝑖 (𝜎) ≥ 𝑈𝑖 (𝜎𝑖𝑣).
A measure to quantify the amount of segregation in a strategy

profile 𝜎 is the degree of integration (DoI), which counts the number

of non-segregated agents, hence DoI(𝜎) = |{𝑖 | 𝑓𝑖 (𝜎) < 1}|. For a
game, let 𝜎∗ be a strategy profile that maximizes the DoI and let NE

be its set of Nash Equilibria. We evaluate the impact of the agents’

selfishness on the social welfare by studying the Price of Anarchy
(PoA) and the Price of Stability (PoS) with respect to the DoI.

A game has the finite improvement property (FIP) if and only if,

starting from any strategy profile 𝜎 , the game will always reach

a NE in a finite number of steps. The FIP does not hold if there

is a cycle of strategy profiles 𝜎0, 𝜎1, . . . , 𝜎𝑘 = 𝜎0, such that for

any 𝑘′ < 𝑘 , there is an agent 𝑖 and empty node 𝑣 ∈ ∅(𝜎𝑘 ′ ) with
𝜎𝑘

′+1 = 𝜎𝑘
′

𝑖𝑣
and 𝑈𝑖 (𝜎𝑘

′ ) < 𝑈𝑖 (𝜎𝑘
′+1). These cycles are known as

improving response cycles (IRCs).

Related Work. Game-theoretic models for residential segrega-

tion were first studied by [9, 10]. There, agents have a monotone

utility function. Agarwal et al. [2] consider a simplified model using

a monotone threshold-based utility function with 𝜏 = 1 and they

introduce the DoI as social welfare measure. Kreisel et al. [15] show

that deciding the existence of NE in the swap version as well as

in the jump version of the simplified model is NP-hard. Bilò et al.

[4] strengthened the PoA results for the swap version w.r.t. the

utilitarian social welfare and investigated the model on specific

graph classes. Other variants are studied in [8, 13, 14]. Bullinger

et al. [7] measure social welfare via the number of agents with non-

zero utility, they prove hardness results for computing the social

optimum and discuss other solution concepts.

Most related is the recent work by [3], which studies the swap-

version of our model. They find that equilibria are not guaranteed

to exist in general, but they do exist for Λ = 1

2
on bipartite graphs

and for Λ ≤ 1

2
on almost regular graphs. The latter is shown via an

ordinal potential function, i.e., convergence of IRDs is guaranteed.

For the PoA they prove an upper bound of min{Δ(𝐺), 𝑛
𝑏+1 }, where

Δ(𝐺) is the maximum degree in 𝐺 , and give almost tight lower

bounds for bipartite graphs and regular graphs. Also, they lower

bound the PoS by Ω(
√
𝑛Λ) and give constant bounds on bipartite

and almost regular graphs. Note that due to the existence of empty

nodes in our model, our results cannot be directly compared.

Also related are hedonic diversity games [5, 6, 12] where selfish

agents form coalitions and the utility of an agent only depends on

the type distribution of her coalition. For such games, single-peaked

utility functions yield favorable game-theoretic properties.

Our Contribution. We investigate Jump Schelling Games with

agents having a single-peaked utility function. Such functions better

reflect recent sociological poll results on real-world agent behav-

ior [19]. Moreover, this is also interesting from a technical point of

view since it yields insights into the properties of Schelling-type

systems under different preconditions.

Regarding NE existence, we provide a collection of positive and

negative results. On the negative side, we show that NE are not

guaranteed to exist on the simplest possible topologies, i.e., on

paths and rings with single-peaked utilities with Λ ≥ 1

2
. This is

in contrast to the version with monotone utilities where for the

case of rings NE always exist. On the positive side, we give various

conditions that enable NE existence, e.g., they exist if the underlying

graph has a sufficiently large independent set, or if it has sufficiently

many degree 1 nodes. For game dynamics, the situation is worse.

We show that even on regular graphs IRCs exist independently of

the position of the peak. Moreover, this even holds for the special

case with Λ = 1

2
and only a single empty node. These results for

Λ ≤ 1

2
also represent a marked contrast to the swap version, where

convergence is guaranteed on almost regular graphs.

With regard to the quality of the equilibria, we focus on theDoI as

social cost function. For the PoA w.r.t. the DoI, we establish that the

technique from [3] for deriving a PoA upper bound can be adapted

to also work in our setting. This yields the same PoA upper bound

of min{Δ(𝐺), 𝑛/(𝑏 + 1)}. Subsequently, we give almost matching

PoA lower bounds and we prove that also the lower bounds for

the PoS almost match this high upper bound. On the positive side,

we show that on graphs with a sufficiently large independent set,

the PoS depends on the ratio of the largest and the smallest node

degree, which implies a PoS of 1 on regular graphs that also holds

for rings with a single empty node.

Last but not least, we consider complexity aspects of our model.

Analogously to previous work on the Jump Schelling Game with

monotone utilities and towork on the Single-Peaked Swap Schelling

Games, we focus on the hardness of computing a strategy profile

with a high DoI. Using a novel technique relying on the Max SAT

problem, we show that this problem is NP-complete, improving on

an earlier result by [2]. Moreover, as a novel conceptual contribu-

tion, we investigate the hardness of finding an equilibrium state via

improving response dynamics. As one of our main results, we show

that this problem is NP-hard. So far, researchers have studied the

complexity of deciding the existence of an equilibrium for a given

instance of a Schelling Game. We depart from this, since even if

it can be decided efficiently that for some instance an equilibrium

exists, guiding the agents towards this equilibrium from a given

initial state is complicated, since this would involve a potentially

very complex centrally coordinated relocation of many agents in

a single step. In contrast, reaching an equilibrium via a sequence

of improving moves is much easier to coordinate, since in every

step the respective move can be recommended and, since this is an

improving move, the agents will follow this advice.

Overall we find that making the model more realistic by employ-

ing single-peaked utilities entails a significantly different behavior

of the model compared to the variant with monotone utilities but

also compared to Single-Peaked Swap Schelling Games.

See Friedrich et al. [11] for the full version of this paper.
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