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ABSTRACT
Deceptive agents are a challenge for the safety, trustworthiness,
and cooperation of AI systems. We focus on the problem that agents
might deceive in order to achieve their goals. There are a number
of existing definitions of deception in the literature on game theory
and symbolic AI, but there is no overarching theory of deception for
learning agents in games. We introduce a functional definition of
deception in structural causal games, grounded in the philosophical
literature. We present several examples to establish that our formal
definition captures philosophical desiderata for deception.
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1 INTRODUCTION
Deception is a core challenge for building safe AI. Many areas
of work aim to ensure that AI systems are not vulnerable to de-
ception [28, 38, 40]. On the other hand, AI tools can be used to
deceive [17, 30, 31], and agent-based systems might learn to do so
in order to optimize their objectives [15, 24, 26]. Furthermore, as
language models become ubiquitous [9, 10, 23, 39, 42], we must de-
cide how to measure and implement desired standards for honesty
in AI systems [11, 25, 27]. In short, as capable AI agents become
deployed in multi-agent settings, deception may be learned as an
effective strategy for achieving a wide range of goals [24, 33].

Despite this, there is no overarching theory of deception for
AI agents. Although there are several existing definitions in the
literature on game theory [3, 8, 16] and symbolic AI [4, 34–36],
the limitations of these frameworks mean they are insufficient to
address deception by learning agents in general [2, 18, 22, 32]. We
formalize a philosophical theory of deception [6, 29, 41], whereby

To deceive = to intentionally cause to have a false belief
that is not believed to be true. [6]

This definition requires notions of belief and intention.We present
functional definitions that depend on the behaviour of the agents,
thereby side-stepping the contentious ascription of theory of mind
to AI systems [25]. Regarding belief, we present a novel definition
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which equates belief with acceptance, where, essentially, an agent
accepts a proposition if they act as though they are certain it is true
[37]. For agents with incentives to influence each other’s behaviour,
we argue acceptance is the relevant notion. As for intention, we
extend a definition of intent in causal models to the multi-agent
setting [19]. This definition relates to the reasons for acting and is
closely related to instrumental goals [1, 5, 12].

Contribution.We sketch functional definitions of belief, intention,
and deception. We model several examples from the literature to
establish that our formalization captures the philosophical concept.

2 DEFINING DECEPTION
Background.We utilize the setting of structural causal games (SCGs)
[21] which offer a representation of causality in games. SCGs can
model stochastic games and MDPs, and can therefore capture both
traditional game theory and learning systems [13, 20]. An SCG
consists of a set of agents 𝑁 , a game graph G, and a parametrization
of the graph 𝜽 which defines the conditional probability distributions
(CPDs) over the variables in the graph. There are three types of
variables in an SCG: chance 𝑿 , decision 𝑫 , and utility 𝑼 variables,
the latter two are partitioned according to their association with an
agent (e.g. 𝐷𝑖 is the decision of agent 𝑖). Chance variables represent
components of the environment. Additionally, there are two types
of edges in G: solid edges represent probabilistic dependence and
dotted edges are observations made by the agents at their decisions.
The agents’ policies define the CPDs over decision variables and are
chosen in order to maximise the expected sum of the agent’s utility.
We adapt the following from the literature on signalling games [7].
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(a) War game (Ex. 1).
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(b) Counterfactual knowledge.

Figure 1: SCG graphs. Chance nodes are circular, decisions
square, utilities diamond and the latter two are colour coded
by their association with different agents. Solid edges repre-
sent causal dependence and dotted edges are observations.
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Example 1 (War game Fig. 1a). A signaller 𝑆 has type 𝑋 ∈ {𝑠𝑡𝑟𝑜𝑛𝑔,
𝑤𝑒𝑎𝑘}. 𝑆 observes their type, but the target agent 𝑇 does not.
The agents have decisions 𝐷𝑆 ∈ {𝑟𝑒𝑡𝑟𝑒𝑎𝑡, 𝑑𝑒 𝑓 𝑒𝑛𝑑} and 𝐷𝑇 ∈
{¬𝑎𝑡𝑡𝑎𝑐𝑘, 𝑎𝑡𝑡𝑎𝑐𝑘}. A weak 𝑆 prefers to retreat whereas a strong
𝑆 prefers to defend.𝑇 prefers to attack only if 𝑆 is weak. Regardless
of type, 𝑆 does not want to be attacked (and cares more about being
attacked than about their own action). The parameterization is such
that the value of𝑋 is strong with probability 0.9.𝑈𝑇 = 1 if𝑇 attacks
a weak 𝑆 or does not attack a strong 𝑆 , 0 otherwise. 𝑆 gains 2 utility
for not getting attacked, and 1 utility is gained for performing the
action preferred by their type (e.g. 1 utility for retreating if they are
weak). At one Nash equilibrium in this game, 𝝅𝑑𝑒𝑓 ,¬𝑎𝑡𝑡 , 𝑆 always
defends and 𝑇 attacks if and only if 𝑆 retreats.

We take it that agents have beliefs over propositions, i.e., Boolean
formula 𝜙 of variable assignments𝑉 = 𝑣 (e.g., 𝑋 = 𝑠𝑡𝑟𝑜𝑛𝑔). Philoso-
phers distinguish between belief and acceptance; essentially, an
agent accepts a proposition if they act as though they know it is
true [37]. We provide a functional (i.e., behavioural) definition of
belief which equates belief with acceptance. To formalise this we
compare the agent’s behaviour to a counterfactual in which they
know about (i.e. observe) a proposition 𝜙 (shown in Fig. 1b). In addi-
tion, we require that the agent’s behaviour responds to knowledge
of 𝜙 , so that their belief can be inferred from their behaviour.

Definition 2.1 (Belief). An agent believes a proposition 𝜙 if 1) they
act as though they know 𝜙 is true and 2) they would have acted
differently had they known 𝜙 were false.

Example 1 (continued). In Fig. 1b we give 𝑇 counterfactual knowl-
edge of the proposition 𝜙 : 𝑋 = 𝑠𝑡𝑟𝑜𝑛𝑔, so that they attack if and
only if 𝑆 is weak. Since 𝑇 never attacks at the Nash equilibrium
𝝅𝑑𝑒𝑓 ,¬𝑎𝑡𝑡 , they unconditionally act as though 𝜙 is true (i.e., 𝑆 is
strong), so the first condition for belief is met. Since 𝑇 ’s decision is
conditional on 𝜙 in the counterfactual game, the second condition
is met. So,𝑇 always believes 𝜙 and𝑇 has a false belief about 𝜙 when
𝑆 is weak.

Deception is intentional. We extend intent to the multi-agent
setting [19]. This notion of intent differentiates desired effects from
unintended side-effects and is related to instrumental goals [12, 21].

Definition 2.2 (Intention). An agent intends to influence a variable
𝑉 if influencing 𝑉 was the reason the agent chose its decision 𝐷 . If
the effect of 𝐷 on 𝑉 was already achieved, the agent would have
made another decision. An agent intends to bring about the best
possible outcome of a variable they influence.

Example 1 (continued). 𝑆 intends to influence 𝐷𝑇 : had 𝐷𝑇 never
attacked by default, then 𝑆 could have played an honest policy. The
reason 𝑆 always defends is to bring about 𝐷𝑇 = ¬𝑎𝑡𝑡𝑎𝑐𝑘 .

In the following, a signaller inadvertently misleads a target.

Example 2 (Inadvertent misleading Fig. 2a). Two submarines must
communicate about the location of a mine-field. The signaler 𝑆
must send the location𝑋 to the target𝑇 , but𝑇 only receives a noisy
observation𝑂 of 𝑆 ’s message. If 𝑆 honestly signals𝑋 but, due to the
noise in the signal, 𝑇 is caused to have a false belief, we would not
say that 𝑆 had deceived𝑇 . Here, 𝑆 intends to influence 𝐷𝑇 but they
do not intend to bring about𝑇 ’s false belief, so this is not deception.
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𝐷𝑇 𝑈 𝑆𝑈𝑇

(a) Example 2: A submarine 𝑆
inadvertently misleads 𝑇 as 𝑇
has a noisy observation of 𝐷𝑆 .

𝐷𝑆

𝐷𝑇

𝑂

𝑋

𝑈 𝑆𝑈𝑇

(b) Example 3: An umpire 𝑆

mistakenly misleads 𝑇 due to
a noisy observation of 𝑋 .

Figure 2: Cases of mistaken misleading (Fig. 2b) are excluded
by our definition of deception because we require that 𝑆 does
not believe 𝜙 is true. Cases of inadvertent misleading (Fig. 2a)
are excluded because we require deception to be intentional.

Deception is to intentionally cause to have a false belief that is
not believed to be true [6]. We formalize this as follows.

Definition 2.3 (Deception). An agent 𝑆 deceives 𝑇 about 𝜙 if
(1) 𝑆 intends to bring about 𝑇 ’s decision;
(2) 𝑇 believes 𝜙 and 𝜙 is false;
(3) 𝑆 does not believe 𝜙 .

Conditions 1. says that deception is intentional. Condition 2.
simply says that𝑇 is in fact caused to have a false belief. Condition
3. excludes cases in which 𝑆 is mistaken.

Example 1 (continued). We previously showed that 𝑆 intends to
bring about 𝐷𝑇 = ¬𝑎𝑡𝑡𝑎𝑐𝑘 , so 1. is satisfied. We already stated
2. that 𝑇 has a false belief about 𝜙 when 𝑋 = 𝑤𝑒𝑎𝑘 . Finally, as 𝑆
unconditionally defends, 𝐷𝑆 does not respond to 𝜙 , so 𝑆 does not
believe 𝜙 . Therefore, all the conditions for deception are met.

As motivated by the following, 𝑆 did not deceive 𝑇 if 𝑆 acciden-
tally caused 𝑇 to have a false belief because 𝑆 was mistaken.

Example 3 (Mistaken Umpire Fig. 2b). A tennis umpire 𝑆 must call
whether a ball𝑋 is out or in to a player𝑇 . The umpire’s observation
𝑂 of the ball is 99% accurate. Suppose 𝑆 believes the ball is in, and
makes this call, but that they aremistaken. They intentionally cause
the player to have a false belief (that the ball was in). But, this is
not deception because the umpire believed the call was correct.

3 CONCLUSION
We functionally define deception in structural causal games and
present several examples to show that our definition captures the
philosophical concept. There are limitations to our approach. First,
beliefs and intentions may not be identifiable from behaviour. Sec-
ond, discretizing belief may give a less precise measure of deception
than a continuous metric. In future work, we will pursue a solution
to deception, based on the path-specific objectives framework [14].
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