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ABSTRACT
We present an approach to learning models for mean field games
from simulation data with a coarse coding scheme that abstracts
away the time-dependent complexity and dramatically simplifies
the input representation.
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1 INTRODUCTION
Mean field games (MFGs) [2, 3] describe systems with a conceptually
infinite number of interacting strategic players. Players within a
population are treated atomistically and identically, and the state of
the system can be captured by a probability distribution over player
states (the “mean field”). The strategic interaction in MFGs can be
characterized by the the optimal behavior of a single representative
player against the full population, as represented by the mean field.
Under certain general assumptions, it can be proved that a class
of MFGs is the limit of N-player games as 𝑁 approaches infinity
[1] and the solution of MFGs approximates the solution of the
corresponding finite game. Therefore, an MFG modeling enables
game-theoretic analysis for games with a large but finite number
of players that would be intractable with a standard modeling.

In this work, we propose a game model learning approach for
MFGs, which is essentially a form of regression that learns a utility
function over a restricted set of strategies and distributions derived
by these strategies. We study a general setup of MFGs where strate-
gies and distributions are both time-dependent (i.e., non-stationary),
and hence encoding them explicitly as inputs to a learner entails
impractically high dimensionality. To handle the time-dependency,
we propose a coarse coding scheme and learn a game model (i.e.,
the utility function) that takes as inputs sufficiently-statistical rep-
resentations of strategies and distributions, and outputs a utility
value.

To obtain samples in high-dimensional spaces of strategies and
mean fields, we propose a combination of two sampling schemes:
grid sampling and sampling from the Dirichlet distribution with
varying concentration parameters. By combining coarse coding
with our data sampling methods, we demonstrate that our approach
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can successfully achieve effective generalization and accurate pre-
dictions on utilities. We also show that the learned game model can
support game-theoretic analysis, that is, both fictitious play (FP)
[4] and replicator dynamics (RD) [5] empirically converge to NE
with the model.

2 METHODS
2.1 Coarse Coding
We handle the time-dependency by learning a black-box version
of the true utility function �̃�. Mathematically, consider a restricted
strategy set Λ ⊆ 𝑆 . Let 𝐼 : Λ → Z+ be a function that index each
strategy 𝑠 ∈ Λ with a positive integer. Let 𝜎 be the mixed strategy
that induces the distributions 𝜇𝜎 . Since the distribution induction
function Φ is deterministic, it is sufficient for 𝜎 to determine 𝜇𝜎

given a fixed initial distribution 𝜇0 ∈ Δ(𝑋 ). Instead of learning
�̃� (𝑠, 𝜇𝜎 ) with time-dependent inputs, we learn a black-box utility
function 𝑢 : 𝐼 (Λ) ×Δ(Λ) → R as a game model using sufficient rep-
resentations 𝐼 (𝑠) and 𝜎 of 𝑠 and 𝜇𝜎 . We refer to this representation
as coarse coding.

Our object is to predict the true utility �̃� (𝑠, 𝜇𝜎 ) by 𝑢 (𝐼 (𝑠), 𝜎) and
thus minimizing the mean square loss 𝐸 [(�̃� (𝑠, 𝜇𝜎 ) − 𝑢 (𝐼 (𝑠), 𝜎))2].
Our regression is based on neural networks.

2.2 Data Sampling
For regression in our case, a data point constitutes an index of a
pure strategy 𝐼 (𝑠), a mixed strategy 𝜎 , and a true utility �̃� (𝑠, 𝜇𝜎 ). To
collect these data points, the basic requirement is that the sampled
mixed strategies 𝜎’s should uniformly distribute in the restricted
strategy space so as to endow the learner with the ability of gen-
eralization across the space of induced distributions. For a large
MFG, a game model typically contains dozens of strategies, which
makes the sample space high-dimensional. To handle this issue,
we combine grid sampling and sampling from symmetric Dirichlet
distributions.

3 EXPERIMENTAL RESULTS
3.1 Approximating NE with a Game Model
In Figure 1 and Figure 2, we plot the regret curves of FP and RD
with the true utility function and the game model respectively in
three MFGs. In all cases of FP, we observe that the regret curve
generated with our game model can quickly coincide with the
one using the true utility function, and both successfully converge
to 0 (i.e., reaching a NE). For RD, we apply re-sampling near the
equilibrium point (indicated by the red vertical line) and observe
the convergence to NE as well.
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Figure 1 Regret curves with FP.

Figure 2 Regret curves with RD.

Figure 3 Distribution estimation in 2-D crowd modeling: (top) true utility function; (bottom) game model.

3.2 Mean Field Estimation
To verify that the learned game model can estimate the mean field
(i.e., distributions) accurately, we plot the time-dependent distribu-
tions induced by the equilibrium strategies computed with the true
utility function and the game model in Figure 3. By comparing plots
on the top and at the bottom in Figure 3 respectively, we observe
that the distributions generated with the game model are almost
indistinguishable by inspection from those generated with the true
utility function. This accuracy can be quantified by Wasserstein

distance, which as we report in Table 1 are all quite tiny (< 0.0005)
though with a tendency to increase over time.

MFG 𝑡 = 11 𝑡 = 16 𝑡 = 21 𝑡 = 26 𝑡 = 30

2-D Crowd 3.9 3.9 4.9 4.0 4.6
Table 1 Wasserstein distances (×10−4) in the 1-D and 2-D
crowd modeling games.
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