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ABSTRACT
Predict-then-optimize is a common paradigm for optimization tasks
situated in incomplete informational settings, in which an agent
estimates missing parameters and then optimizes over these pre-
dicted parameters. One proposed improvement to this predict-then-
optimize framework is decision-focused learning, which establishes
an end-to-end learning pipeline, allowing a predictive model to be
tailored to the particular optimization task. The behavior of this
predict-then-optimize framework in the presence of noise, how-
ever, is not well-understood. This is problematic because many
data collection and annotation systems are inherently noisy, and
the introduction of such noise could lead to poor downstream op-
timization. In this work, we aim to present results on robustness
to label noise in decision-focused learning and traditional predict-
then-optimize tasks using a Stackelberg game as the underlying
framework of explanation. Our results suggest that playing the
Stackelberg game in anticipation of label noise yields robustness in
the predict-then-optimize framework at large, and that the optimal
decision-focused learning Stackelberg solution continues to out-
perform the optimal traditional predict-then-optimize Stackelberg
solution.
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1 INTRODUCTION
Autonomous agents often incorporate predictive AI models to make
“smart” decisions in the midst of incomplete information using the
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predict-then-optimize framework [4, 7, 8, 10, 13]. In predict-then-
optimize, an agent predicts missing information, and then optimizes
a reward function based on these predictions. The standard way of
accomplishing this is to train a two-stage model in which the agent
first learns amachine learningmodel trained tomaximize predictive
accuracy, and then runs an optimization algorithm maximizing
a decision quality function over the trained model’s predictions.
Notably, maximizing predictive accuracy is not always equivalent
to maximizing the specified reward function [6]. To address this
issue, decision-focused learning, in contrast to two-stage learning,
trains the predictive model to optimize the decision quality function
and differentiates through the entire prediction and optimization
pipeline, making training an end-to-end process. Decision-focused
learning has been shown to improve performance over traditional
two-stage models across a variety of domains and applications
such as traffic navigation optimization, portfolio optimization, web
advertising, and allocating scarce maternal health resources [6, 8,
11, 13].

While decision-focused learning is becoming increasingly popu-
lar, little is known about its performance in “messy” settings, like
those with noisy or sparse data. Three possible sources of label
noise include: (a) sparsity in the training data, (b) bias in training
data collection, and (c) distribution shift between the training and
test sets. While decision-focused learning has historically outper-
formed standard two-stage models, we have no understanding if
this holds in the presence of noisy labels at test time.

Butler et al. [5] demonstrate that both two-stage and decision-
focused learning are susceptible to poisoning attacks that add ad-
versarial noise to the features that the model is trained on [12].
However, to the best of our knowledge, no work has compared the
relative robustness of two-stage and decision-focused learning, nor
have any works proposed methods for improving the robustness of
decision-focused learning in the presence of noisy labels.

In this work, we cast two-stage and decision-focused learning
under label noise as general-sum and zero-sum Stackelberg games,
respectively, and use this modeling to derive bounds on the relative
performance of the two frameworks. Given the growing popularity
of algorithmic agents that make decisions via the predict-then-
optimize framework and the frequency of noisy data labels, this
work is the first to our knowledge that explores the intersection
between predict-then-optimize and robust game theory (cf. [1, 9]).
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2 BACKGROUND
2.1 The Learner’s Predict-then-optimize

Problem
In the standard predict-then-optimize framework, an autonomous
agent predicts something about the state of the world, then opti-
mizes a decision quality function given their prediction. The predic-
tive task is to learn a parameterized model𝑚𝑤 from given features
𝑥 ∈ X to predict the unknown parameters 𝑦 ∈ Y ⊆ R𝑘 . The opti-
mization problem is to then maximize a decision quality function
𝑓 : Z × Y → R as a function of decision 𝑧 ∈ Z and parameters
𝑦 ∈ Y.

In this framework, we assume the learner first makes a prediction
𝑦 B 𝑚𝑤 (𝑥) using the predictive model𝑚𝑤 : X → Y parameter-
ized by weights 𝑤 . The learner then uses the prediction 𝑦 as the
parameter of the optimization problem to find the optimal decision
𝑧∗ (𝑦), where 𝑧∗ is defined by

𝑧∗ (𝑦) B argmax
𝑧∈Z

𝑓 (𝑧,𝑦) . (1)

The decision is then evaluated on the ground truth parameter 𝑦 to
obtain a decision quality 𝑓 (𝑧∗ (𝑦), 𝑦).

The learner is given a dataset Dtrain = {𝑥𝑖 , 𝑦𝑖 } to train the pre-
dictive model. After the model𝑚 is trained, a testing dataset Dtest
is presented. The learner uses the given features to generate predic-
tions of the missing labels and propose the corresponding decisions.
The decisions are evaluated on the revealed ground truth labels in
the testing set:

1
|Dtest |

∑︁
(𝑥,𝑦) ∈Dtest

𝑓 (𝑧∗ (𝑦), 𝑦), 𝑦 =𝑚𝑤 (𝑥)

We are primarily concerned with the setting in which the labels
𝑦𝑖 ∈ Dtest are noisy.

2.2 Learning Methods without Label Noise
We summarize two existing learning methods with different ob-
jectives that the learner uses to train the predictive model 𝑚𝑤

parameterized by the weight𝑤 .
The two-stage (TS) approach learns a predictive model𝑚𝑤 by

minimizing mean squared error:

min
𝑤

∑︁
(𝑥,𝑦) ∈Dtrain

∥𝑚𝑤 (𝑥) − 𝑦∥2 (TS)

After the model is learned, the predictions𝑦 =𝑚𝑤 (𝑥) are then used
to optimize the decision quality function 𝑧∗ (𝑦) in Equation 1.

In contrast, the predictive objective in decision-focused learning
is the decision quality function instead of mean squared error.

max
𝑤

∑︁
(𝑥,𝑦) ∈Dtrain

𝑓 (𝑧∗ (𝑚𝑤 (𝑥)), 𝑦) (DFL)

The advantage of decision-focused learning is the alignment of
the training objective and the testing objective. To optimize the
objective in DFL, it is common to use gradient descent, which
requires back-propagating through the optimal decision 𝑧∗ defined
in Equation 1 . This can be achieved by differentiating through the
optimality and KKT conditions as shown by [2, 3].

3 CONTRIBUTION
In this paper, we propose to study the learning challenge in a predict-
then-optimize framework with a potential mismatch in the train-
ing distribution and the testing distribution. We cast the learning
problem as Stackelberg games; these formulations lead to robust
two-stage and robust decision-focused learning problems. We show
bounds on the performance of the robust two-stage and the robust
decision-focused learning problems with a tightness guarantee.
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