
Counterfactual Explanations for Reinforcement Learning Agents
Doctoral Consortium

Jasmina Gajcin
Trinity College Dublin

Dublin, Ireland
gajcinj@tcd.ie

ABSTRACT
Reinforcement learning (RL) algorithms often use neural networks
to represent agent’s policy, making them difficult to interpret. Coun-
terfactual explanations are human-friendly explanations which of-
fer users actionable advice on how to change their features to obtain
a desired output from a black-box model. However, methods for
generating counterfactuals in RL ignore the stochastic and sequen-
tial nature of RL tasks, and can generate counterfactuals which are
difficult to obtain, affecting user effort and trust. My dissertation
focuses on developing methods that take into account the complex-
ities of RL framework and provide counterfactual explanations that
are easy to reach and confidently produce the desired output.
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1 INTRODUCTION
In the recent years, reinforcement learning (RL) algorithms have
achieved remarkable success in numerous tasks, and are being de-
veloped for high-risk applications, such as autonomous vehicles
[16]. However, RL algorithms often rely on neural networks to
represent the agent’s policy, making their behavior difficult to un-
derstand and interpret [18]. As RL agents are developed for real-life
tasks, understanding their behavior is necessary for ensuring user
trust and encouraging human-AI collaboration.

In the earlier stages of my PhD research I explored contrastive
(Section 2) and causal explanations (Section 3), before deciding on
counterfactual explanations as the research topic (Section 4).

2 CONTRASTIVE EXPLANATIONS FOR
COMPARING AGENTS’ PREFERENCES

The majority of XRL approaches focus on explaining one policy
[1, 10, 13, 18]. However, understanding the differences between
policies is necessary to understand how different reward functions
affect agent’s behavior or in situations where user needs to choose
between multiple policies. To that end, we proposed an algorithm
for comparing and explaining the preferences of RL agents trained
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on different reward functions [8]. Our approach generates con-
trastive explanations about two policies 𝜋𝐴 and 𝜋𝐵 by analysing
the state space in which policies disagree on the best course of
action due to the difference in their preference. Our approach can
differentiate between differences in behavior that stem from differ-
ent abilities of policies and those caused by the different preferences
of equally capable agents. We then use only data on preference-
based differences of policies to generate contrastive explanations
that describe state features that individual policies favor. We eval-
uated our approach in a merging task for autonomous vehicles,
where we compare a speed-oriented with a safety-oriented policy.

3 RECCOVER: DETECTING CAUSAL
CONFUSION FOR EXPLAINABLE RL

Causal confusion occurs when agent relies on the spurious correla-
tions between features that might not hold across the state space [5].
If an agent is deployed to an environment where such correlation
is broken, its decisions are misguided and performance suffers.

We proposed ReCCoVER (Recognizing Causal Confusion for
Verifiable and Explainable RL) [7], an algorithm for detecting and
correcting causal confusion in critical states in RL agents. While
previous work can detect causal confusion only after performance
drops in states where spurious correlations are broken [5, 12],
ReCCoVER detects and corrects causal confusion before deploy-
ment. ReCCoVER detects causal confusion in a specific state by
testing agent’s performance in alternative environments where
spurious correlations might not hold. Alternative environments
are generated by performing causal interventions on state features,
which can break correlation between them. Additionally, a feature-
parametrized policy 𝜋𝐺 is trained to simultaneously learn a separate
policy for each feature subset, and evaluated in the alternative en-
vironments to uncover whether ignoring certain features during
training leads to more robust policies. Causal confusion is detected
when agent’s performance decreases significantly in an alternative
environment, but a policy relying on a subset of features 𝐺 ′ per-
forms well. ReCCoVER then advises the developers to only rely on
the features from 𝐺 ′ in the critical state 𝑠 .

Although aimed at developers of RL systems, ReCCoVER offers
actionable advice on how to change the feature space to avoid causal
confusion, making it a human-friendly explanation method. Addi-
tionally, ReCCoVER uncovers causal relationships in agent’s rea-
soning, which is inherent to human way of understanding events.

4 COUNTERFACTUAL EXPLANATIONS IN RL
The main research topic of my thesis is developing counterfactual
explanations for RL agents. Counterfactuals interpret the decisions
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of black-box models by answering the question: “Given that black-
box model outputs A for input features 𝑓1, · · · 𝑓𝑘 , how can the features
be changed so that output B is obtained?” [22]. For example, if a
person’s loan application is rejected by an automated system a
counterfactual explanation could help them understand how they
can change their features in order to be approved in the future.
Counterfactual explanation of an instance 𝑥 is given in the form
of a counterfactual instance 𝑥 ′, which is as similar as possible to 𝑥
but produces the desired output. Counterfactuals are a natural ex-
tension to my earlier PhD work, as they are actionable, contrastive
and causal.

As they can suggest life-altering changes to user’s features, coun-
terfactual explanations carry a great responsibility. Counterfactuals
that are difficult to obtain or do not deliver the desired outcome can
cost users time and effort, which can cause frustration and decrease
trust in the system. For that reason, counterfactual explanations
are often evaluated against counterfactual properties,in order to to
find those which are most suitable for the user. For example, valid-
ity is evaluated as the probability that the counterfactual instance
produces the desired outcome, and proximity is a feature-based
similarity measure used to choose the counterfactual that is most
similar to the original instance. Similarly, sparsity measures the
number of feature changes between the original instance and the
counterfactual, and data manifold closeness ensures that the coun-
terfactual instance falls within the realm of realistic instances, to
ensure it’s easily obtainable [21].

Numerous methods have been developed for generating coun-
terfactual explanations for supervised learning tasks [3, 14, 17, 22].
Search for counterfactuals often consists of defining a loss function
comprising multiple counterfactual properties and optimizing it
over the training data set. The approaches differ in their definition
of the loss function and the choice of the optimization approach. In
RL counterfactuals have been used to explain the choice of action𝐴
in state with features 𝑓1, ..., 𝑓𝑘 by generating a similar counterfactual
state where model chooses a different action 𝐵. The only approach
to generating counterfactuals in RL relies on a similar approach as
supervised learning methods and uses generative models to find
counterfactuals that are similar in features to the original state [15].

In my first work on exploring counterfactual explanations in
RL, we conducted a survey of the state-of-the-art counterfactual
approaches in supervised and RL and analysed the main differences
between the two frameworks from the perspective of counterfactual
explanations [6]. One of the main findings of this research is that
the idea of easily obtainable instance varies significantly between
supervised and RL. While supervised learning deals with one-step
prediction tasks, RL focuses on sequential and often stochastic tasks.
This means that in RL two states can have similar features, but be
far from each other in terms of execution. Relying solely on the
feature-based counterfactual properties, while sufficient in super-
vised learning, can generate counterfactuals that are difficult to
obtain or do not deliver the desired outcome in RL tasks. Addition-
ally, while supervised learning models make predictions based only
on input features, decisions of RL agents are motivated by a wider
range of causes, such as goals, objectives or outside events. To fully
understand agent’s behavior, counterfactuals should not rely only
on state features, but include all potential causes of a decision [4].

As a result of this research, I devised a research question which
is guiding my current and future work:

How can counterfactual explanations be redefined to
account for the complex, sequential and stochastic
nature of RL tasks?

While our work in Gajcin and Dusparic [6] offers theoretical
justification for redefining counterfactuals for RL tasks, we are cur-
rently working on implementing the first algorithm for generating
RL-specific counterfactual explanations. We have redefined and
implemented novel counterfactual properties from RL perspective
and use them to guide the search for counterfactuals. Specifically,
we look for counterfactuals that optimize the following properties:

(1) Reachability: it is possible for two states to be similar in
features but far away in terms of execution. We define reach-
ability as the minimum number of RL actions necessary to
navigate from the original to the counterfactual state.

(2) Cost-efficiency:while current work assumes there is no differ-
ence in cost of changing different features, in reality, some
changes require more effort. We define cost-efficiency as
the minimal cumulative RL cost of performing actions to
transform the original into the counterfactual state.

(3) Stochastic certainty: during the process of transforming the
original into the counterfactual state, stochasticity in the
environment can affect the state. We define stochastic cer-
tainty as the probability of obtaining the desired outcome
after performing the sequence of actions that transforms the
original into the counterfactual state.

Currently, we are implementing an approach for generating
counterfactuals that optimize the above properties. We aim to ex-
plore if relying on RL-specific counterfactual properties can gener-
ate more easily obtainable counterfactuals compared to methods op-
timizing traditional, feature-based counterfactual properties. More-
over, we are conducting a user study to explore how RL-specific
counterfactual explanations affect user understanding of agents.

Evaluation is one of the biggest obstacles to developing coun-
terfactual explanations. While supervised learning approaches are
often evaluated on the same datasets (e.g. German credit [3, 14],
Breast Cancer [2, 11] or MNIST dataset [9, 11, 19, 20]), in RL there
is not established benchmark for evaluating counterfactuals. Addi-
tionally, few works evaluate counterfactuals in a user study [15],
despite counterfactuals being heralded as human-friendly explana-
tions. A user-focused investigation of the best ways to present and
evaluate counterfactuals will make a part of my remaining PhD
work.

In the future work, we plan to explore the personalization aspect
of counterfactual generation. Namely, counterfactual search opti-
mizes different, often conflicting objectives, which might not all
be equally important to the user. We hope to explore how human-
in-the-loop approaches can be applied to counterfactual search to
ensure that the explanations align with user’s preferences. Further-
more, we plan to investigate ways for generating counterfactuals
that do not rely only on changing state features, but also goals, ob-
jectives and other causes of decisions specific to the RL framework.
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