
Artificial Intelligence Algorithms for Strategic Reasoning over
Complex Multiagent Systems

Doctoral Consortium

Zun Li
University of Michigan, Ann Arbor

lizun@umich.edu

ABSTRACT
My Ph.D. research focuses on developing practical algorithms in
computer games by assembling a variety of artificial intelligence
methods (game-tree search, machine learning, graphical models,
etc.). In this extended abstract, I will briefly review three of my
previous works that studied normal-form games, Bayesian games,
and extensive-form games through modern AI lenses. Then I will
cast three possible future directions that I am dedicating to.
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1 INTRODUCTION
Computer games had historically been one of the fundamental
driving forces for the field of artificial intelligence research. To
develop practical game-playing AI in large and complex games such
as Go [25], Poker [19], and Stratego [23], researchers should not
only make use of the analytical results from classic economics, but
also flexibly incorporate contemporary AI methods which facilitate
approximate but scalable computation. My Ph.D. research focuses
on the latter part.

2 PAST WORKS
My past Ph.D. works followed precisely the chronological order
that most game theory textbooks are organized: the most basic
normal-form games are first studied, then are games with incom-
plete information, and then are dynamical games with imperfect in-
formation. The only difference here, though, is that my approaches
were more from a computational perspective using practical AI
methods, instead of deriving the exact mathematical solutions.

Structure Learning in Normal-Form Games. A normal-form game
representation generally connotes a utility function 𝑢𝑛 : 𝑆1 × . . . ×
𝑆𝑁 → R for agent 𝑛 in an 𝑁 -player game, where 𝑆𝑖 is the strategy
space of agent 𝑖 . However the normal-form representation does
not scale: for 𝑁 -player, 𝑀-strategy games, it requires a tensor of
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𝑂 (𝑁𝑀𝑁 ) to store all the utility values. This makes the efficient
computation of solution concepts such as Nash equilibrium prohib-
itive. Furthermore, such payoff values might not be given exactly,
but can only be estimated through agent-based simulation. My pre-
vious work [16] adopted a model-based learning approach to tackle
this issue. By using supervised or unsupervised learning techniques,
we can learn a succinct representation (such as clusters or a graph)
of the true game using payoff data under some structural hypothe-
sis. The computation within the learned game can be much more
efficient, and the solutions were experimentally shown well in the
true games.

Deep Evolutionary Search in Bayesian Games. Bayesian games [10]
augment the normal-form representation using the concept of
type that represents the belief over opponents’ hidden informa-
tion (e.g., parameters in their utility functions such as private cards
in Poker). In this case, a pure strategy now becomes a mapping
from a player’s types to actions. Bayesian games were typically
studied in auction theory [12] where type spaces or action spaces
were low-dimensional and regular so that analytical solutions can
be derived. In my previous work [17], I formulated the equilibrium
computation problem in Bayesian games in a similar way as in
Deep RL, where each pure strategy is represented as a neural net,
and the utilities come in the form of black-box simulation data. Us-
ing natural evolution strategies [29], I proposed two algorithms to
compute pure equilibria and mixed equilibria, respectively. The first
one exploits the symmetry structure of the game and transforms
the problem into solving a two-player zero-sum Stackelberg game.
We found that deep neural nets can recover classical analytical
solutions in simple games like first- and second-price auctions. The
second method is inspired by double-oracle [18]. We demonstrated
the capabilities of these algorithms on high-dimensonal games.

Combining Game-Tree Search and Multiagent RL in Extensive-
Form Games. My latest work [15] will be presented at AAMAS’23
as an extended abstract. In this work, we extended AlphaZero-
styled search method to general-sum imperfect information games
by replacing MCTS with information-set MCTS [6], and learning
a deep belief network to represent belief states at the root of the
search tree. Furthermore, we combine this new search method
with policy space response oracle [14] and construct a decision-
time AI bot that can conduct test-time search and online Bayesian
opponent modeling. We evaluate this bot against humans in a class
of negotiation games and found our bot gave comparable social
welfare with humans.
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3 FUTURE DIRECTIONS
Through the years I had been thinking about how much capacity
of the classic results in game theory can support designing modern
game-playing AI. It turns out that most of the current successful AI
bots heavily rely on the minimax theorem in two-player zero-sum
games, which, may lose its power in more general game settings. I
identify the following directions to be central and promising:

New multiagent evaluation metrics and solution concepts. Nash
equilibrium may no longer make sense in a general-sum environ-
ment due to the equilibrium selection issue. So, how can one claim
that an agent is “strong" in such environments? Do we still use
exploitability or game-theoretic regret as a score metric? Or, is mea-
suring performances against humans the only way to go? A more
interesting question is whether there is a way to define a canonical
distribution over opponents or agent population where one can
appeal to game-theoretic scores [3, 21] to rank the agents. For ex-
ample, the reason why the famous “Tit-for-Tat" strategy stood out
in the repeated prisoners’ dilemma tournament [2] was probably
that there was a certain degree of collaborative elements among
other participants’ strategies, which, might be a reasonable test-
time distribution to assume. Another possibility is to resort to other
game-theoretic solutions. Examples include correlated equilibria
with certain equilibrium selection criteria such as maximal social
welfare.

New representation/languages for practical agent architecture. In
two-player zero-sum games, people usually approximate Nash at
training time and improve its quality (for both players) online at
test time [5] to devise the optimal play. However in general-sum
games, it may no longer be safe to assume your opponents are
playing according to some Nash. In this case, a belief modeling over
the environment (both the imperfect information of the game and
the other players’ strategies) might be eventually inevitable. In fact,
an epistemic model which considers a belief hierarchy (I think you
think I think you will play....) might be an effective tool for general-
sum strategic reasoning. People had developed certain graphical
representations such as network of influence diagram [7] to facili-
tate recursive opponent modeling, and the field of epistemic game
theory [1, 11, 22] had been historically providing an alternative use-
ful way of thinking. A question is whether these representations
scale into large domains. One possible approach is to adopt the
common-prior assumption (CPA) [4, 8, 20] in economics that might
simplify the complexity of the cognitive architecture. CPA might
not be an entirely restrictive assumption if the agents at test-time
are also trained under the same entity (say, the self-driving cars
from the same automobile system).

New decision-time planning / search methods. Search, or planning
techniques improve solution quality at test time in an online fashion,
and had been demonstrated thorough ablation studies the crux of
most of the human-level game-playing bots 1 [19, 25]. However as
mentioned earlier, in general-sum environments there is perhaps
no justification for conducting equilibrium search, but for planning
within a belief hierarchy. Since a search call typically conducts
multiple traverses over the game tree at one decision step, it might
1Exceptions include AlphaStar [27] for StarCraft II and DeepNash for Stratego [23],
both of which use a model-free RL approach.

be computationally expensive to do planning within an epistemic
model if the other players’ types are also assumed to be search-
based. One solution is to use distilled policies for others within
the search procedure [26] such as the policy network part of the
search algorithm. Another possible approach is to permit imperfect
recall for the agents and search within an abstracted version of the
true game [13, 28]. While imperfect recall will cause mathematical
issues for belief revision [24], it is worth pointing out that most of
the deep RL agents today are, effectively, imperfect recall agents.
An interesting algorithmic question would be how imperfect recall
changes the execution of a planning algorithm (for example if an
agent deviates from an information set, that probably will also cause
its deviation in other places of the search tree). Another possible
research direction is to compute refined equilibrium solutions in
games of imperfect recall [9] and study their practical benefits such
as generalization capabilities.
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