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ABSTRACT
The emergence of cooperation is a major question in game the-
ory and one under-studied aspect is the effects of networks on
the emergent behaviour. My PhD asks this question over multiple
collaborations and projects, using methodologies from (evolution-
ary) game theory, agent-based simulations, networks and complex
systems. As a researcher, however, I am interested in an even wider
and broader variety of topics and have such collaborated on other
projects focusing on the effects of networks and hypergraphs on
learning problems (namely agent learning and rating prediction).
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Complex behaviours often emerge out of even the simplest intelli-
gent multi-agent systems, such as the emergence of cooperation in
evolutionary game theory. My Ph.D. at the University of Warwick
investigates the effects of the underlying space or network on such
emergent properties, by representing agent intelligence with parsi-
monious models and analysing their dynamic interactions with the
environment. In particular my research focuses on the emergence
of cooperation as well as other complex behaviours.

In this extended abstract I give abstracts of the multiple projects
and collaborations I have undertaken under this large remit. I first
discuss our work on the emergence of cooperation on dynamic
networks under a variety of strategy-update and partner-update
rules [8], particularly noting that core-peripheral structures also
form. I find similarly that cooperation and mesoscale structures
emerge out of spatial public goods games of pollution [7] towards
which migration and density plays an important role. I then focus
on predicting dynamic outcomes for biased political elections on
gerrymandered social networks [4, 5]. Identifying the impacts of
structure and space is a core and recurrent aspect of my work,
as I outline the impacts of networks on agent learning in noisy
information flows [6] as well as how hypergraph representations
of structured data can improve interpretable rating predictions.
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I briefly turn to a data-based project identifying the impacts of
infrastructural changes to road networks on social connectivity [1],
before finally concluding with future avenues of research.

Cooperation on Dynamic Networks. With the increased impor-
tance of network-mediated interaction, researchers have shifted
the attention to the impact of social networks and their dynamics
in promoting or hindering cooperation, drawing various context-
dependent conclusions. For example, some lines of research, theo-
retical and experimental, suggest the existence of a threshold effect
in the ratio of timescales of network evolution, after which co-
operation will emerge [12, 19], whereas other lines dispute this,
suggesting instead a Goldilocks zone [16, 23].

In this project [8] we provide an evolutionary game theory frame-
work to understand coevolutionary processes from a bottom up
perspective - in particular the emergence of a cooperator-core and
defector-periphery - clarifying the impact of partner selection and
imitation strategies in promoting cooperative behaviour, without
assuming underlying communication or reputation mechanisms. In
doing so we provide a unifying framework to study imitation-based
cooperation in dynamic social networks and show that disputes in
the literature can in fact coexist in so far as the results stem from
different equally valid assumptions.

Migration in a Spatial Social Dilemma of Pollution. Much atten-
tion has been devoted to understanding cooperation in populations
where agents interact with random peers (well-mixed), interact over
complex networks, or interact in fixed spatial positions [18, 20, 25].
In spatial settings with mobile agents, however, the effects of co-
operation are circumscribed to arbitrary neighbourhoods and the
stability of cooperation depends on individuals’ capacity to move
between sites and form dense clusters [9, 10, 21]. The existing inter-
actionmodels, however, ignore the long-range effects of undesirable
behaviour, which our project addresses.

In this project [7], we study spatial public goods games in which
agents either pollute (defectors) in a large area or clean (cooperators)
their local area and can migrate to empty sites within range. We ask
whether migration promotes cooperation and reduces the negative
impacts of defection. Analytically and through agent-based simula-
tions, we show that migration ultimately reduces the pollution felt
per-capita in at least two ways: 1) polluters encourage eco-friendly
neighbours to migrate away, eventually clustering with other coop-
erators and 2) migration stabilises cooperation in dense population
scenarios. Our results reveal a complex interaction between migra-
tion and density as key factors to promote cooperation in spatial
social dilemmas.

Biased Elections on Social Networks. A recently proposed graph-
theoretic metric, the influence gap [24], has shown to be a reliable
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predictor of the effect of social influence in two-party elections, al-
beit only tested on regular and scale-free graphs. In this project, we
investigate whether the influence gap is able to predict the outcome
of multi-party elections on networks exhibiting community struc-
ture, i.e., made of highly interconnected components, and therefore
more resembling of real-world interaction. To encode communities
we build on the classical model of caveman graphs [27], which
we extend to a richer graph family that displays different levels
of homophily [3, 26], i.e., how much connections and opinions are
intertwined.

In the initial conference paper [4], we study the predictive power
of the influence gap in the presence of communities. We show that
when there is no clear initial majority the influence gap is not a
good predictor of the election outcome. When we instead allow for
varying majorities, although the influence gap improves as a predic-
tor, counting the initial partisan majority does consistently better,
across all levels of homophily. Moreover, we study the combined
effect of the more predictive metrics, as function of the homophily
levels. Using regression models, we demonstrate that the influence
gap combined with the initial votes count does increase the overall
predictive power for some levels of homophily.

Finally we extend our work in a journal paper [5], studying
elections with more than two parties. Specifically, we extend the
definition of the influence gap to any number of parties, considering
various generalisations, and show that the initial votes count has
an even higher predictive power when compared to influence gap
than it did in the two-party case.

Noisy Information Flow in Networked Learning. We study the
problem of noisy information propagation in networks - building
on the Grapevine model [11] where a small number of sources send
messages across the network - and agents use Bayesian updates
to make inferences about the state of the world from the received
messages (similar to [13]). We provide upper bounds on the total
number of sources necessary for learning on a given network and
refine the bound in the case of small-world networks. We then
extend themodel to include an adversarial attacker, who can corrupt
some of the information sources.

We find that there is an optimal greedy attacking strategy in
the case of a single learner, while the multi-learner case is not
always solved optimally using greedy approaches. However, despite
the influence function not being submodular, we show that the
greedy algorithm performswell in practice.We also show that much
simpler heuristics, which only look at centrality measures, can also
provide a good basis to calculate successful attacking strategies.
Finally we analyse the loss of optimality in the case when the
attacker has incomplete information about the network and has to
estimate the influence of source corruption heuristically. We use
real-world social networks, as well as random network models, to
empirically evaluate the effectiveness of attacking strategies and
suggest a variety of measures to counteract them.

Hypergraph-based Interpretable Machine Learning. Given poten-
tial synergies or discords between team members, predicting future

group ratings from past aggregate data is not always trivial. Will
an individual belonging to a high-performing group contribute
positively to a new collective? How to infer future ratings based
on graphs representing previous groups’ composition? While these
challenges can be tackled with state-of-the-art graph representa-
tion learning approaches, in this project we focus on equipping
interpretable methods (e.g., linear regression) (see for example dis-
cussion in [22]) with data engineered from the underlying group
formation hypergraph.

We show that explicitly including data on the temporal group
formation hypergraph improves future rating prediction. We com-
pare three major approaches to predicting hyperedge quantities (i.e.,
group ratings): a classical linear regression approach which treats
group composition as dummy variables; a hypergraph centric ap-
proach which calculates and aggregates intermediary quantities for
constituent nodes and a line graph centric approach which projects
the hypergraph into weighted directed line graphs. In essence, the
two latter models use the inherent structure of the data (the hyper-
graph) to inform more intelligent feature engineering. Using the
Internet Movie Database as a dataset, we find that the hypergraph
methods significantly improve accuracy, with the line graph centric
method having comparative - at times, better - accuracy than the
hypergraph centric one.

The Impact of Structural Changes on Social Connectivity. Large
infrastructural changes may result in lower travel times between
regions and thus reduce their mutual access times or spatial distance.
As a consequence, social connectivity is expected to increase among
such regions with decreasing spatial distance of access times [2,
15, 17]. To explore this phenomenon, we use a unique geolocated,
timestamped database from a Hungarian online social network
called iWiW, containing data from 2002 through 2012, covering
around 40% of the total population throughout its life-cycle [14].
To address infrastructural changes, we compile a historical road
network dataset from OpenStreetMap coupled with data about the
year of construction and average speed limit.

Focusing on those pairs that experienced a substantial change in
their physical connection, we compute a variety of measures, and
compare them to spatially-informed null models of social connectiv-
ity. Our results confirm that a decrease in travel times between pairs
of settlements has a lagged increasing effect on social connectivity.

Future Research. Although we have found that migration and
spatial density promotes cooperation (stylised as eco-friendly be-
haviour) [7] we will extend our model to capture costly migration -
a more realistic assumption given the time cost and financial fees
tenants must spend in order to move house. Moreover there are
interesting questions regarding wealth disparity and to what extent
this impacts the wider population.

Regarding the Ph.D. as a whole I will be developing further the
connective tissue that ties together the variety of projects I have
already undertaken, to synthesise into a coherent thesis. In particu-
lar I will focus on the themes of underlying structures and spaces,
and how they impact and are impacted by multiagent dynamics.
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