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ABSTRACT
Epidemic forecasting is a crucial tool for public health decision mak-
ing and planning. There is, however, a limited understanding of how
epidemics spread, largely due to other complex dynamics, most no-
tably social and pathogen dynamics.With the increasing availability
of real-time multimodal data, a new opportunity has emerged for
capturing previously unobservable facets of the spatiotemporal dy-
namics of epidemics. In this regard, my work brings a data-centric
perspective to public health via methodological advances in AI at
the intersection of time series analysis, spatiotemporal mining, sci-
entific ML, and multi-agent systems. This extended abstract focuses
on our new techniques for end-to-end learning with mechanistic
epidemiological models—based on differential equations and agent-
based models—that bridge ML advances and traditional domain
knowledge to leverage individual merits. I finalize discussing some
future directions for my work.
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1 INTRODUCTION
As the recent COVID-19 experience has shown, preventing epi-
demics and pandemics is one of the major challenges of our time,
with far reaching impacts on health, economy, and broad social
well-being. One of the key prevention tasks is prediction of the
future spread of epidemics in the population (forecasting). These
predictions are used for various decision-making purposes, from
resource allocation to individual risk assessment.

AI and public health are becoming increasingly intertwined due
to several accelerating trends. (a) There is an increasing availabil-
ity of multimodal data that provides real-time information about
the spatiotemporal dynamics of epidemics. These include mobil-
ity, symptomatic searches, behavioral online surveys, and health
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monitoring from wearable devices. (b) Advances in AI, especially in
deep learning, have shown impressive results in capturing complex
relationships across data modalities resulting in greater general-
ization power. Hence, the time is ripe to leverage AI in developing
public health solutions.

My work focuses on the following challenges to realize the po-
tential of AI, within the context of a data-centric pipeline for public
health [16]. First, data is scarce, sources may disagree, and domains
or distributions may unexpectedly shift over time. Second, real-time
deployment for response to disease outbreaks faces many issues
not present in carefully controlled environments such as reporting
delays, missing values, and data revisions. Third, prior epidemiolog-
ical (scientific) knowledge on the mechanisms of epidemic spread
is necessary to predict how epidemics will unfold over long time
horizons and to answer counterfactual questions.

To address these challenges, my research proposes: (a) Novel
robust and modular deep learning architectures for response to
disease outbreaks focused on real-time deployment. For instance,
an operational deep learning pipeline for explainable real-time
COVID-19 forecasting [15]. (b) New techniques for end-to-end
learning with mechanistic epidemiological models (based on differ-
ential equations and agent-based models), that bridge ML advances
and traditional domain knowledge to leverage individual merits.
For example, designing differentiable agent-based models that are
seamlessly coupled with neural networks and can leverage gradient-
based learning via automatic differentiation [2]. In this extended
abstract, my focus is on the second set of methods validated in
real-world data for Influenza and COVID-19.

2 BRIDGING NEURAL NETWORKS AND
THEORETICALLY-GROUNDED ODE MODELS

My work introduces epidemiologically-informed neural networks
(EINNs) [13]. Our neural forecasting models have been successful in
short-term forecasting, which typically is up to four weeks ahead–
e.g., see [3] for results of our operational deep learning frame-
work GT-DeepCOVID [15]. Nevertheless, long-term predictions
well-correlated with epidemic trends remains an open challenge.
Epidemiological ODE models–such as the SIR (susceptible-infected-
recovered) model [6]–contain mechanisms that can guide us in
this task, however, they have limited capability of ingesting data
sources and modeling composite signals. Thus, we propose to in-
corporate epidemic dynamics from an epidemiological ODE model
into a neural framework for forecasting, which enables seamless
integration of multimodal data, greater representation power, and
inclusion of composable neural modules of learned representations.
We leverage the rapidly growing literature in physics-informed
neural networks (PINNs) [10] that integrate neural networks and
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ODEs. PINNs, however, cannot incorporate datasets that are not
explicitly described in the differential equations and their archi-
tecture is the multi-layer perceptron, which is a subpar inductive
bias for sequential data. We developed an end-to-end framework to
learn the epidemic mechanistic dynamics via a PINN and transfer
its representations to a deep sequential neural network which in-
gests novel data sources. Unlike previous work, we do not assume
complete dynamics can be observed and do not need to integrate
over the ODE during training. Our approach leads to significant
improvements in long-term forecasting and trend correlation.

3 DIFFERENTIABLE PROGRAMMINGWITH
ABMS AND NEURAL NETWORKS

My work introduces GradABM, a differentiable design for agent-
based epidemiological models that can be seamlessly coupled with
neural networks [2]. Agent-based models (ABMs) are simulators
where agents act and interact within a computational environment.
In epidemiology, ABMs have become increasingly popular since
they are more flexible and able to model more details than ODEs.
These models are, however, traditionally slow [1], difficult to cali-
brate (fit) to real-world data [4, 17], and require additional layers of
complexity for incorporating novel datasets [7].We could use neural
modules to seamlessly incorporate data sources, but ABMs are based
on non-differentiable and discrete operations, which also prevents
us from using a framework like EINNs. Thus, we propose to redesign
ABMs to be tensorized and fully differentiable simulators, which
enables end-to-end learning with deep neural networks to incor-
porate novel data sources into calibration and prediction of ABMs.

We take advantage of exist-
ing invariances in disease
transmission and reformu-
late it as message passing
operations over sparse net-
works. This results in quick
and highly parallelized for-
ward simulations. To make
our ABM fully differen-

tiable, we reparametrized discrete distributions used in disease
transmission and progression with continuous relaxations. This
allows our method to take advantage of the practical benefits of
gradient-based optimization for calibration and forecasting.

4 DISCUSSION AND FUTUREWORK
This extended abstract outlines two techniques that lay the ground-
work for facilitating a closer integration between AI advancements
and mechanistic models/simulators in epidemiology. However, in-
corporating more intricate mechanistic epidemiological models
presents certain challenges that need to be addressed in future
work. For example, as the number of compartments in ODE models
increases, the resulting complexity leads to greater unobservability,
necessitating additional engineering efforts to constrain the opti-
mization problem. Additionally, to introduce more features such as
vaccination strategies into our differentiable ABM, we must find
a way to make such interventions a differentiable operation. It ap-
pears unlikely that a single solution that suits all situations can
be found in these efforts. On another front, we have demonstrated

that our techniques are applicable to various airborne infectious
diseases, namely Influenza and COVID-19. In future research, it
would be valuable to explore the constraints of these approaches
in modeling other infectious diseases that have distinct transmis-
sion modes, such as vector-borne diseases and sexually transmitted
diseases.

Additionally, I am interested in building on our successes to con-
tinue to push the boundaries of MLmethods for modeling epidemics
and other spatiotemporal processes in social and technological sys-
tems. The following are some promising directions I am excited
about. Despite focusing on public health as their motivation, I am
eager to examine these research directions in other social impact
areas, such as socioeconomic development, humanitarian crises,
sustainability, and community resilience. For the latter, I plan to
leverage my previous work on disaster resilience of critical infras-
tructure networks [11, 14].

AI-augmented differentiable simulators. My current research ad-
dresses end-to-end learning with fully detailed epidemiological
models. I am eager to study cases where domain or scientific knowl-
edge is incomplete. For instance, the effects of genetic mutations
and climate on disease infectiousness are scientifically understood,
yet existing models of disease transmission (such as those used in
my research) do not take these factors into account, and instead
largely center around human interactions. To bring together these
two pieces of scientific knowledge in a unified simulator, I will
leverage my work in differentiable ABMs and create differentiable
simulators augmented with ML modules that fill in the gaps in
scientific knowledge. These new simulators can also be coupled
with differentiable solvers for discrete optimization [18] and trained
end-to-end, which allows us to optimize our predictions to be most
useful for downstream decisions to be taken. I believe this novel
class of simulators has a strong potential to amplify the impact of
AI across a variety of scientific disciplines.

Principled AI methods for bias and equity issues. The results of my
research on systematically addressing missing values [15] and data
revisions [8] show that developing methods to tackle data-related
issues is a promising direction. I am interested in addressing other
urgent issues such as accounting for sampling biases and inequity
in data collection. For instance, the CDC reports flu-like illness
patients based on data from a limited number of voluntary health-
care providers, which accounts for less than 5% of the population
and is often biased towards wealthier individuals. Further, datasets
from digital sources also present biases due to costs associated
with access and their opt-in nature. By utilizing these datasets to
monitor and predict disease activity, there is a risk of underestimat-
ing the healthcare needs of low-income communities, thus further
diverting resources away from them. Currently, it is challenging
to create equitable ML methods, as it requires taking into account
how people from different subgroups of the population interact
with one another. I plan to investigate ML methods that can system-
atically account for these bias and inequity issues using my deep
learning frameworks and my previous studies on using AI safety
techniques [12]. In my work, I will provide an alternative viewpoint
on addressing data biases by utilizing theoretically-grounded mod-
els and granular representations, which will complement existing
related research [5, 9].
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