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ABSTRACT
Fair Division is a flourishing field that has garnered a lot of attention
in recent times. Allocating a set of valuable resources fairly among
interested agents along with guaranteeing everyone’s satisfaction
is a crucial task with a wide range of applications, both routine and
high-stakes. This paper presents our existing and ongoing work in
the following directions – a) minimizing envy when absolute envy-
freeness is unachievable b) identifying the structured instances
where fair and efficient allocation problems admit fast algorithms c)
quantifying the trade-off between fairness (EF1/EQ1) and efficiency
notions (social welfare functions) of an allocation.
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1 INTRODUCTION
The problem of fair division concerns with partitioning a set of valu-
able resources among interested agents having (possibly heteroge-
nous) preferences over these resources. Allocating scarce medical
resources like organs for transplantation, vaccines during a pan-
demic; dividing territory and resources in a post-conflict scenario
are a few high-stakes applications. The theoretical formalism of
fair division was initiated by Steinhaus [30] and since then, it has
witnessed a vast literature in mathematics, economics and recently
computer science [9, 10, 26].

An instance of the fair division problem is specified by a tu-
ple ⟨𝑁,𝑀,V⟩, where 𝑁 = {1, 2, . . . . , 𝑛} is a set of 𝑛 ∈ N agents,
𝑀 = {𝑔1, 𝑔2, . . . 𝑔𝑚} is a set of 𝑚 indivisible goods, and V B
{𝑣1, 𝑣2, . . . , 𝑣𝑛} is the valuation profile consisting of each agent’s
valuation for the goods. For any agent 𝑖 , its valuation function
𝑣𝑖 : 2𝑀 → N ∪ {0} specifies its value (or utility) for every subset
of goods in 𝑀 . These are said to be additive if the value of a set
of goods 𝑆 is simply the sum of the value of the goods in 𝑆 . An
allocation 𝐴 = (𝐴1, . . . , 𝐴𝑛), which is a partition of𝑚 goods into 𝑛
agents and valued at 𝑣𝑖 (𝐴𝑖 ) by any agent 𝑖 , is said to be:

• envy-free (EF) if every agent values her bundle the best and
does not wish to swap with anyone else’s. That is, for any
pair of agents 𝑖 and 𝑗 , we have 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 ) [16, 33].
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• equitable (EQ) if every agent derive equal value from their
respective bundles. That is, for any pair of agents 𝑖 and 𝑗 , we
have 𝑣𝑖 (𝐴𝑖 ) = 𝑣 𝑗 (𝐴 𝑗 ) [15].

When the resources are divisible (money, land, time etc.), EF is
guaranteed to exist [8, 31]. But in case of indivisible resources, the
agent deprived of the valuable resource is bound to envy the one
who gets it. In this realm of non-existence of absolute fairness, the
natural objective is tominimize the amount of envy in the allocation.
Chevaleyre et. al. [14], Nguyen and Rothe [27] and Shams et. al. [29]
have looked at the complexity and approximability of minimizing
the degree of envy. As a part of this thesis, we study the complexity
of minimizing envy in the context of House Allocation problems,
where every agent must get exactly one resource–the house.

Since EF and EQ do not have existential guarantee, in order to
define the notions that do exist, there have been advancements
towards relaxed versions of fairness. To this end, Envy-freeness up
to one good (EF1) [11, 23] bounds the envy in the sense that the
envious agent can hypothetically remove one good from the envied
bundle and then, if she prefers her own bundle, she is said to be
envy-free up to one good. Equitability upto one good (EQ1) [18, 19]
is defined analogously. Both EF1 and EQ1 allocations exist and are
efficiently computable under additive valuations.

While fairness is a compelling notion, it is not the only object
of interest. Orthogonal to the notion of every agent getting a fair
share, the efficiency of an allocation is determined by the total
happiness/welfare of the agents. This is captured by the notions
like Pareto optimality (no other allocation makes an agent happier
without worsening someone else), Utilitarian welfare (sum of the
agent utilities), Egalitarian welfare (the utility of the least happy
agent), Nash welfare (geometric mean of the agent’s utilities).

There has been significant progress towards the questionwhether
it is possible to simultaneously achieve fairness and efficiency. Even
if fair and efficient allocations exist in a setting, the computation
part is hard [5, 17]. As a part of this thesis, we propose to identify
structures in the valuations of agents that facilitate polynomial time
algorithms for finding the desired allocation.

Caragiannis et. al. [13] showed that when valuations are additive,
all MNW allocations are both EF1 and PO, indicating the compat-
ibility of EF1 and PO. On the other hand, fairness and welfare
maximization may not fare well together. For instance, allocating
all the items to an agent who values them the most seems to be an
efficient allocation (both PO and maximizes utilitarian welfare) but
is blatantly unfair. Not allocating anything to anyone is fair in the
sense that no agent envies anyone, but it is inefficient and has worst
possible welfare. Recent works [2, 4] have looked at the hardness
and approximations for computing the utilitarian optimal allocation
among the set of fair allocations. The prominent question here is to
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quantify how much welfare is sacrificed in order to achieve a fair
question. This is captured by the price of fairness [7, 12], which is
defined as the supremum ratio of the maximum welfare achievable
by any allocation to the maximum welfare achievable by a fair allo-
cation. The bounds on price of EF1, Nash welfare and other fairness
criterion are discussed in fairly recent papers [2, 3, 6]. These works
capture the loss of utilitarian welfare under the said fairness con-
straint. The dimension that is not captured in the previous works
is the price one has to pay in terms of Nash and other general wel-
fare functions in order to achieve EF/EQ allocations. An immediate
corollary from the previous works is that the price of EF1 for Nash
welfare is essentially 1, that is to say that Nash welfare remains
intact while achieving EF1. While this is not the really case with
the other welfare/fairness combinations, we propose to close this
gap and study the price of fairness in this broader sense.

Based on above discussed notions, thework in this thesis revolves
around the following narratives, which are discussed in detail in
the respective sections:

• Minimizing the envy when absolute envy-freeness cannot
be guaranteed (Section 2).

• Identifying the parameters (agent/item-types) and structures
in the valuation profile (degeneracy/distance) that facilitate
the computation of fair and efficient allocations (Section 3).

• Quantifying the fairness and welfare trade-off for general
welfare functions (Section 4).

2 ENVY-MINIMIZATION
When EF allocations do not exist, a natural question is to find an
allocation that minimizes “envy". Kamiyama et. al. [22] showed
that it is hard to find allocations that minimize the number of
envious agents, even for binary utilities. Under the relaxed variant
of assigning at most one house to every agent, Horev et. al. [1] gave
an algorithm for finding a maximum envy-free matching under
binary utilities. In a more recent work, Hosseini et. al. [21] consider
minimizing the aggregate envy where an agent envies only those
who are connected to her in a given social network.

In our recent work [24], we look at minimizing three different
notions of envy – a) the total number of agents who experience
envy, b) the envy experienced by the most envious agent, where
the amount of envy experienced by an agent is simply the number
of agents that she is envious of, and c) the total amount of envy
experienced by all agents. We propose efficient algorithms for in-
stances with binary valuations that admit extremal structure. We
show tractability, for the former two notions, parameterised by
agent/house-types, which intuitively correspond to the number of
distinct agents/houses, a parameter that is potentiallymuch smaller
than number of agents/houses. This is obtained using an ILP for-
mulation with a bounded number of variables, a result that is also
of independent practical value. Extending the interesting classes
of structured input for which these problems are tractable is an
important and interesting direction for future work.

3 STRUCTURAL ASPECTS
Sandomirskiy and Halevi [28] demonstrated that finding fair alloca-
tions with minimum sharing of goods is tractable when valuations
are non-degenerate, a notion which captures scenarios that are “far

from identical”. This result holds for any fixed number of agents.
Building up on this, in a recent work [25], we show that the useful-
ness of non-degeneracy does not scale to the setting of many agents.
In particular, we demonstrate that the problem of finding (fraction-
ally) PO and EF allocations is hard even for instances with constant
degeneracy and no sharing. The idea of capturing the ‘extent of
similarity in the valuations’ and the dependence of existence of
desired allocations on this parameter is worth-exploring. One way
this can be captured is by considering some well-defined notion of
distance between two valuation vectors. It is clear that when this
distance is large, EF and PO allocations can be easily constructed. To
capture the extent to which it helps in the computation of desired
allocations is an interesting direction of future work.

4 FAIRNESS ANDWELFARE TRADE-OFF
A social welfare function is an aggregation of the agent’s utilities
under a given allocation. For any 𝑝 ∈ (−∞, 1], the 𝑝-mean wel-
fare is the generalized 𝑝-mean of utilities of agents under 𝐴, i.e.,

𝑊𝑝 (𝐴) B
(
1
𝑛

∑
𝑖∈𝑁 𝑣

𝑝

𝑖
(𝐴𝑖 )

) 1
𝑝 . With 𝑝 = 1, the 𝑝-mean welfare

function corresponds to the Utilitarian welfare. As 𝑝 → 0 and
𝑝 → ∞, it tends to the Nash and Egalitarian welfare respectively.

Sun et. al. [32] proposed bounds (as a function of number of
agents) on the price of EQ1/EQX in terms of egalitarian/utilitarian
welfare. Building up on this, in an ongoingwork, we propose bounds
on price of EQ1 in the context of generalized 𝑝-mean welfare func-
tions (in terms of agent-types). It is interesting to see that under
binary additive valuations, although EF1 is compatible with Nash
Welfare [20], and the price of EF1 in this setting (and hence, for
generalized 𝑝-means) is essentially 1, but for EQ1, there are in-
stances where loss of 𝑝-mean welfare is inevitable, and hence we
have non-trivial lowerbounds.

There are quite a few compelling future directions here to pursue.
First is to explore the fairness-efficiency trade-off in the setting of
chores and/or a mixture of goods and chores. An interesting dual
question to price of fairness is the price of welfare-maximization,
which is to quantify howmuch fairness is to be sacrificed to achieve
a welfare optimal allocation. Bei et. al. [6] look at the bounds on
Utilitarian social welfare achieved by PO allocations, comparing
the trade-off of two efficiency notions. Along similar lines, an inter-
esting direction would be to explore the trade-off of two fairness
notions, say capturing the extent of loss of EQ while ensuring EF.

5 CONCLUSION
We hope to provide new insights on scenarios where desired fair
and efficient algorithms exist and are computable. Tractability pa-
rameterised by agent-types and item-types in the context of house
allocation algorithms builds hope for exploring these parameters in
more general settings. Decoding the structure hidden in the valua-
tions of agents seems to be a promising forward step. Whether low
price of fairness guarantee can be instrumental in designing such
algorithms is also one direction, which we feel, is worth exploring.
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