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ABSTRACT
It is challenging to quantify numerical preferences for different
objectives in a multi-objective decision-making problem. However,
the demonstrations of a user are often accessible. We propose an
algorithm to infer linear preference weights from either optimal
or near-optimal demonstrations. The algorithm is evaluated in
three environments with two baseline methods. Empirical results
demonstrate significant improvements compared to the baseline
algorithms, in terms of both time requirements and accuracy of
the inferred preferences. In future work, we plan to evaluate the
algorithm’s effectiveness in a multi-agent system, where one of the
agents is enabled to infer the preferences of an opponent using our
preference inference algorithm.
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1 INTRODUCTION
In a multi-objective decision-making process, the agent receives
reward vectors for different objectives. The utility function is used
to make trade-offs between competing objectives by evaluating the
reward vector as a utility scalar. In the existing literature, the most
frequently used approach to get utility scalar is linear scalarization
[1, 2, 5, 7]. In linear scalarization, the weight over the reward is
referred to as the preference. However, giving a precise numerical
preference is not always intuitive for users. For example, consider a
case where a portfolio manager selects stocks based on their weight-
ing of minimizing risk and maximizing profits. He/she might want
to give a higher weighting to maximize profits but a specific value
is hard to determine. A small error in their preference can result
in a significantly different policy which may lead to a sub-optimal
solution. However, although it is difficult to numerically name the
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preference, a user can often demonstrate their preferences. Prefer-
ence Inference (PI) methods that use demonstration are therefore
helpful when solving such problems.

Furthermore, in a multi-agent multi-objective decision-making
process, if some agent can use the PI mechanism to infer other
agents’ preferences, it could gain information about the other
agents. The knowledge of others’ preferences can provide an ad-
vantage to these "wise" agents.

2 PREFERENCE INFERENCE
PI is to infer a set of weights that are used to scalarize a reward
vector during the multi-objective decision-making process. This is
similar to inverse reinforcement learning (IRL), which infers the
reward function by finding a set of linear parameters that scalarize
state-relevant features. There are two assumptions:

• The trajectories observed are from the optimal policy or
near-optimal policy. This is a widely accepted assumption
in existing literature for both IRL [9, 11, 12] and PI [10].

• Based on the first assumption, given either optimal or near-
optimal policy, the average reward trajectory is solely deter-
mined by preferences and environment transitions.

The PI problem happens when we are given a point assumed to
be on the Pareto optimal set (POS) based on some unknown weights
for the utility function, and we would like to know what exactly
the weights are. For more realistic scenarios, we also consider dom-
inated points that are close to the points on the POS, known as
sub-optimal policies to test the PI algorithm. By adding sub-optimal
noise to the data, we ensure that the inference model is robust on
sub-optimal reward trajectories.

We first use the dynamic weight reinforcement learning (DWRL)
agent to generate behaviour trajectories [4]. We then propose the
dynamic weight-based preference inference (DWPI) algorithm to
infer the preferences of the agent for different behaviour trajectories.
The training process of the DWPI algorithm is presented in Figure 1.
The DWRL agent takes the preference vector as part of the state so
that it can change its behavior pattern during runtime by changing
the preference. Given the interaction between a trained DWRL
agent and the environment, a set of optimal reward trajectories
are generated. The trajectory set is augmented by adding random
sampled sub-optimal noise to be the training set of the inference
model. The inferencemodel is trained under the supervised learning
paradigm by inputting the reward trajectory and predicting the
corresponding preference.
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Figure 1: DWPI Training Phase

Algorithm 1 Dynamic Weight Preference Inference Algorithm
Initialize inferring model I, sub-optimal noise space SN, environment
E, and preference space Ω
Load the trained dynamic weights RL agent 𝐴𝐺
Initialize feature set 𝑋 , target set 𝑌
while not enough entries in 𝑋 do

Sample a preference vectors 𝝎 from Ω
𝐴𝐺 plays one episode with 𝝎, generates reward trajectory 𝝉𝒓
Sample a noise vector 𝜹 from SN
Store the noisy reward trajectory 𝝉𝒓 + 𝜹 in 𝑋 , store 𝝎 in 𝑌

end while
while I not converge do

Sample batch from 𝑋 to train the inferring model, loss L = ∥�̂� − 𝝎 ∥
end while

We evaluate our algorithm in three environments: Convex Deep
Sea Treasure[8], Traffic[4], and Item Gathering[4] and compared
to two benchmarks projection method (PM) [3] and multiplicative
weights apprenticeship learning (MWAL) [10]. Our method outper-
forms the baseline methods by both time efficiency (Figure 2) and
PI performance (Table 1). The experiments are implemented with
Python 3.9, TensorFlow version 2.3.0, and run on a machine with
11th Gen Intel(R) Core(TM) i7-1165G7 2.80GHz CPU.

Figure 2: Time Efficiency Comparison

The results of the evaluation show that the DWPI algorithm
performs well in terms of inference accuracy.

3 OPPONENT PREFERENCE MODELLING
In future work, we will utilize the DWPI algorithm in the multi-
agent environment to enable an agent to gain knowledge of other
agents’ preferences to gain an advantage over them.

It will be evaluated in two environments. The first one is theWolf-
pack environment [6], where two predator agents try to capture

Table 1: Performance Improvement

Environment Traffic Item Gathering

KL-divergence PM MWAL PM MWAL

Optimal Demo DWPI 90.8%↑ 99.56%↑ 98.01%↑ 99.13%↑
Sub-optimal Demo DWPI 89.55%↑ 99.53%↑ 96.89%↑ 99.25%↑

Mean Squared Error PM MWAL PM MWAL

Optimal Demo DWPI 97.7%↑ 99.8%↑ 85.91%↑ 98.1%↑
Sub-optimal Demo DWPI 94.13%↑ 99.83%↑ 83.81%↑ 98.9%↑

Utility PM MWAL PM MWAL

Optimal Demo DWPI 60.56%↑ 98.93%↑ 90.67%↑ 82.62%↑
Sub-optimal Demo DWPI 71.87%↑ 90.60%↑ 99.85%↑ 94.50%↑

randomly moving prey. If the capture happens when the Manhattan
distance between the two predators 𝑑𝑖𝑠𝑡 ≤ 3, it is determined as
cooperation or competition when 𝑑𝑖𝑠𝑡 > 3.

The second environment is the multi-agent item gathering mod-
ified from [4]. Two RL agents move in the grid world to gather
randomly distributed blocks with three different colors, i.e. green,
red, and yellow. Each agent has a preference weight vector over
the color of the blocks.

Two sets of experiments will be done in each environment. The
first experiment is between two normal agents while the second
experiment is between a normal agent and a wiser agent which is
able to infer the other’s preference. The performance of the agents
will be analyzed to check whether the inference mechanism will
help the wiser agent gain advantages during the games.

4 CONCLUSION
We propose the DWPI algorithm to infer preference from demon-
strations in themulti-objective decision-making process.We further
evaluate the utility of this algorithm for enhancing an agent in the
multi-agent system. With our PI model, an agent can know its oppo-
nent better and therefore achieve better performance on its target.
For future work, we would like to evaluate the opponent preference
modeling performance in multi-agent systems. The extension of the
DWPI algorithm to infer a non-linear preference is also a direction
that we are interested in.
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