
Towards Sample-Efficient Multi-Objective
Reinforcement Learning

Doctoral Consortium

Lucas N. Alegre
Institute of Informatics - Federal University of Rio Grande do Sul

Porto Alegre - RS, Brazil
Artificial Intelligence Lab - Vrije Universiteit Brussel

Brussels, Belgium
lnalegre@inf.ufrgs.br

ABSTRACT
In sequential decision-making problems, the objective that a rein-
forcement learning agent seeks to optimize is often modeled via
a reward function. However, in real-world problems, agents often
have to optimize multiple (possibly conflicting) objectives. This
setting is known as multi-objective reinforcement learning (MORL).
In MORL, the goal of the agent is not to learn a single policy, but
a set of policies, each of which specialized in optimizing a single
objective or a combination of objectives. In my Ph.D., I investigate
methods that allow the agent to learn a carefully-constructed set of
policies that can be combined to solve challenging MORL problems
in a sample-efficient manner. In this paper, I present a brief overview
of my work on this topic and focus on two main contributions: (i)
a novel algorithm for optimal policy transfer based on theoretical
equivalences between successor features andMORL; and (ii) a novel
MORL algorithm based on generalized policy improvement that
learns a set of policies that is guaranteed to contain an optimal
policy for any possible agent’s preferences over objectives.
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1 INTRODUCTION
Reinforcement learning (RL) [16] has been successfully applied to
solve challenging decision-making problems [6, 8, 12, 17]. In RL, a
task is often represented by a single scalar reward function that en-
codes the agent’s goal. However, in many real-world problems, the
agent must optimize behaviors that balance multiple (possibly) con-
flicting objectives, each encoded by a different reward function. For
example, a robot may need to balance speed, battery usage, and ac-
curacy in reaching a goal location. Multi-objective RL (MORL) [10]
algorithms tackle such a challenge.

Standard RL algorithms can be sample-inefficient as they may re-
quire the agent to interact with the environment a large number of
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times [16]. This can make them impractical in situations where in-
teractions are costly or dangerous. The problem of sample efficiency
is further exacerbated in MORL algorithms because they require the
agent to learn a set of policies instead of a single one, each aimed
at optimizing a different trade-off between the agent’s objectives
[19]. This further increases the number of interactions required,
making it even more challenging to implement these algorithms in
real-world scenarios.

Until now, during my Ph.D., I have explored different strategies
to design sample-efficient algorithms capable of learning multiple
policies specialized to different preferences over objectives/features.
First, in [1], we introduced a novel method based on theoretical
equivalences between the optimal policy transfer problem tackled
by successor features (SFs) [4] and the MORL problem, that learns a
set of policies that is guaranteed to contain an optimal policy for
any possible agent’s preferences over objectives. Next, in [3], we
further explored these connections and introduced a novel MORL
algorithm that employs generalized policy improvement (GPI) [5] to
(i) identify promising preferences to train on and (ii) identify which
previous experiences are most relevant when learning a policy for
a particular preference. I discuss both contributions in Section 2
and Section 3, respectively.

2 OPTIMAL POLICY TRANSFER
When reward functions are expressed as linear combinations of
features, and the agent has previously learned a set of policies for
different tasks, the framework of successor features (SFs) and gen-
eralized policy improvement (GPI) [4] can be exploited to identify
reasonable policies for new tasks in a zero-shot manner. Intuitively,
GPI generalizes the policy improvement step by improving a given
policy, tasked with solving a particular task, over a set of poli-
cies, instead of a single one. However, the resulting policy is not
guaranteed to be optimal. In [1], we introduce a novel algorithm
that addresses this limitation and solves the following optimal pol-
icy transfer problem: how to construct a set of policies such that
combining them directly leads to the optimal policy for any novel
linearly-expressible tasks?

Wefirst show (undermild assumptions) that the transfer learning
problem tackled by SFs is equivalent to the problem of learning to
optimize multiple objectives in RL. We then introduce SFOLS, an
SF-based extension of the Optimistic Linear Support [14] algorithm
to learn a set of policies whose SFs form a convex coverage set
(CCS). We prove that policies in this set can be combined via GPI to
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Figure 1: (Left) Expected performance over the preference distribution of SFOLS on the Reacher domain; (Middle) Expected
utility of GPI-LS on the Minecart domain; (Right) Expected utility of GPI-LS in the MO-Hopper domain.

construct optimal behaviors for any new linearly-expressible tasks,
without requiring additional training samples.

We empirically show that our method outperforms state-of-the-
art competing algorithms in discrete and continuous domains under
value function approximation. For instance, we compare SFOLS
with competing algorithms (WCPI [20] and a random baseline) on
the MO-Reacher domain. In this domain, the agent controls a two-
joint arm that must reach different target locations. A weight vector
encodes the linear preferences over each feature (the distance to
each target location) of the reward function. In the left panel of
Fig. 1, we show that SFOLS learns a set of policies that outperform
the competing algorithms in terms of expected return over the
weight distribution in few iterations. It does so by following the
GPI policy (solid lines) or the best learned policy (dashed lines).

3 SAMPLE-EFFICIENT MORL VIA GPI
In [3], we introduce a novel MORL algorithm, with important theo-
retical guarantees, that improves sample efficiency via two novel
prioritization techniques which are based on GPI.

If the utility function of a MORL problem is a linear combina-
tion of the agent’s objectives, optimal solutions are sets of policies
known as convex coverage sets (CCS) [15]. Given a CCS, agents can
directly identify the optimal solution to any novel linear prefer-
ences. MORL algorithms that learn a CCS (e.g., [13]) may be sample
inefficient (i) due to the heuristics they use to determine which pref-
erences to train on, at any given moment during the construction of
a CCS; and (ii) because they can only improve a CCS after optimal
(or near-optimal) policies are identified—which may require a large
number of samples acquired via environment interactions.

We address the first issue via a novel algorithm, GPI-LS, which
employs a GPI-based prioritization technique for selecting which
preferences to train on. GPI-LS prioritizes preferences based on
a lower bound on performance improvements guaranteed to be
achievable via GPI, which accurately and reliably identifies the
most relevant preferences to train on when learning a CCS. To
address the second issue, we show that our method is an anytime
algorithm that monotonically improves the quality of its CCS, even
if given intermediate (possibly sub-optimal) policies for different
preferences. This improves sample efficiency: our method identifies
intermediate CCSs with formally bounded maximum utility loss
even if there are constraints on the number of times the agent
can interact with its environment. GPI-LS is guaranteed to always
converge to an optimal solution in a finite number of steps, or an

𝜖-optimal solution (for a bounded 𝜖) if the agent is limited and can
only identify possibly sub-optimal policies.

A complementary approach for increasing sample efficiency
(which has been increasingly studied in the context of deep RL [11])
is to use a model-based approach to accelerate learning. In MORL,
once a model is learned, it can be used to identify policies for any
preferences, thus minimizing the required number of interactions
with the environment. Dyna algorithms are based on generating
simulated experiences to more rapidly update a value function
or policy. An important question, however, is which artificial ex-
periences should be generated to accelerate learning. We intro-
duce GPI-Prioritized Dyna (GPI-PD), a novel Dyna-style MORL
algorithm—the first model-based MORL technique capable of deal-
ing with continuous state spaces. It introduces a new, principled
GPI-based prioritization technique for identifying which experi-
ences are most relevant to rapidly learn the optimal policy for novel
preferences.

In the middle and right panels of Fig. 1, we compare GPI-LS (and
its model-based extension with GPI-PD) with competing algorithms
in the Minecart and MO-Hopper domains, respectively. These do-
mains are available in the MO-Gym library, which we introduced
in [2]. Our methods consistently identify optimal solutions, reach
near-zero maximum utility loss, and achieve performance metrics
that strictly dominate that of competitors. This is the case even
when we allow the PGMORL algorithm [18] to collect 9 million
experiences: they could interact with their environment ten times
more often than our method/agent. Even then, GPI-PS (with or
without using a learned model) consistently achieved higher ex-
pected utility during learning, and converged to a final solution
with superior performance.

4 FUTUREWORK
In future work, I would like to explore how other model-based
techniques can be employed to increase the sample efficiency of
MORL algorithms. For instance, an interesting direction would
be to use predecessor/backward models [7] or value equivalent
models [9] to learn policies for different agent preferences. Another
important challenge is dealing with uncertainties in the learned
model and/or action-value function predictions. Because GPI relies
on the value function of all the available policies, a single error in
the value estimate of a policy’s action may ruin the performance of
the GPI policy. Thus, knowing when to trust the value estimates of
each policy is crucial in policy transfer settings.
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