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ABSTRACT
Autonomous systems have the potential to significantly boost the
productivity of our society. However, safety concerns are the pri-
mary impediment to the widespread use of autonomous systems.
Safe decision-making for autonomous systems is a crucial step
toward developing safe autonomous systems. My Ph.D. topic fo-
cuses on a formal approach to efficiently generating verifiable safe
decision-making for autonomous systems. I have designed and im-
plemented a three-stage formal approach to addressing the issue,
and I have validated my approach with a real-world autonomous
logistic system consisting of three autonomous mobile robots. This
paper summarizes my current work and outlines my future work.
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1 INTRODUCTION
Autonomous systems have the potential to significantly boost the
productivity of our society, as they can make their own decisions
without external instructions. However, safety concerns have led
many to express skepticism about autonomous systems such as
self-driving cars. Therefore, providing safety assurance for au-
tonomous systems is vital, albeit challenging. Safe autonomous
decision-making is a crucial research topic for ensuring the safety
of autonomous systems.

[15] provides a high-level overview of an approach for formally
verifying the behaviors of autonomous systems. Building on the
approach described in [15], [12] presents a verification method-
ology for the decision-making component in agent-based hybrid
systems. [14] introduces an architectural framework for developing
verifiable self-certifying autonomous systems. [16] analyzes the
key aspects to develop a framework for the certification of reliable
autonomous systems. [10] presents a framework for verifiable au-
tonomous decisions and its applications to assessing a range of
properties of autonomous systems.

My research builds upon the assumptions and definitions estab-
lished in the aforementioned research work [10, 12, 14–16]. Specif-
ically, I focus on the design and analysis of a safe agent-based
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decision-making component that serves as a high-level discrete
controller for an autonomous system. This component operates
independently but collaboratively with the low-level continuous
controller of an autonomous system [12]. Given the inherent unpre-
dictability of the real world, it is impossible to guarantee that any
system will always behave safely [10]. Consequently, I consider an
autonomous decision-making component safe if it avoids deliber-
ately pursuing unsafe behaviors based on its beliefs and goals [10].
Furthermore, I use formal verification to provide safety assurance
for the decision-making component.

2 A THREE-STAGE FORMAL APPROACH
To facilitate verifiable safe decision-making for autonomous sys-
tems, I have devised a three-stage formal approach consisting of
formal specification, safe decision generation, and PCTL model
checking. This formal approach is made possible through the uti-
lization of four key components: a specification language named
vGOAL that specifies autonomous decision-making mechanisms;
an interpreter for vGOAL that automates safe decision-making gen-
eration; a translator that translates a given vGOAL specification to
a PRISM model; and a PCTL model checker such as Storm [9] or
PRISM [22] that verifies the soundness of the given vGOAL specifi-
cation. My contributions are vGOAL, the interpreter of vGOAL, and
the translator of vGOAL. The approach has been validated by a real-
world autonomous logistic system consisting of three autonomous
mobile robots. Three demos can be accessed at [26]: one demo for
an error-free run, one demo for a run including a non-fatal error,
and one demo for a run including a fatal error. The following briefly
explains the key aspects of each stage.

2.1 Formal Specification: vGOAL
The formal specification requires a specification language that is
expressive to specify autonomous decision-making mechanisms
and suitable for formal verification. Additionally, it is advantageous
to have a compatible interface with a widely used development
framework for robotic applications.

Agent programming languages (APLs), including AgentSpeak
[3], Jason [4], Gwendolen [11], and GOAL [18], have been exten-
sively researched for programming autonomous agents for decades,
rendering them well-suited for specifying autonomous decision-
makingmechanisms. GOAL sharesmany featureswith Belief-Desire-
Intention (BDI) APLs, such as beliefs and goals, but it is primarily a
rule-based APL [5]. Despite the potential benefits of APLs in the
development of autonomous robotic systems, their research has not
been widely used in the field. Integration with the Robot Operating
System (ROS) may expand their applications to robotics, as ROS has
become the de facto standard for developing robotic applications.
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vGOAL is motivated by three primary considerations, which is a
GOAL-based specification language that focuses exclusively on the
internal logic reasoning mechanism of GOAL. First, GOAL is highly
suitable for specifying autonomous decision-making, but many of
its specifications are irrelevant to this domain, such as environment
specifications. Second, the intrinsic logic-based nature of GOAL
makes it highly suitable for formal verification. Third, GOAL has
no build-in interface to ROS, which limits its applicability in robotic
applications. Therefore, vGOAL can leverage the strengths of GOAL,
formal verification, and ROS.

2.2 Safe Decision Generation: Interpreter
The agent-based decision-making component is implemented as
the interpreter for vGOAL, which is integrated into ROS via ros-
bridge [7]. The motivation and the initial design of this stage were
described in [27].

Figure 1 demonstrates how the interpreter generates safe deci-
sions through interaction with ROS. ROS keeps sending real-time
sensor information to the interpreter on a regular basis, e.g., every
100 milliseconds. The interpreter has three main components: a
data processing component, a decision-making generation compo-
nent, and a safety checking component. The interpreter generates
decisions based on real-time information. Each generated decision
will be checked if it violates any safety requirements. Only safe
decisions can be sent to agents.

Data Processing

Decision-Making Generation

Safety Checking

RosbridgeSpecification

Sensor

𝐴𝑔𝑒𝑛𝑡1 𝐴𝑔𝑒𝑛𝑡𝑛

Interpreter

ROS

Figure 1: Safe Agent-Based Decision-Making Component

2.3 PCTL Model Checking: Translator
A vGOAL specification is considered sound when there is at least
one feasible and safe plan available to achieve all goals. Formal
verification is a compelling method for verifying the soundness of
vGOAL specifications. Owing to the automated verification process,
model checking is the most successful and influential verification

method in verifying APLs, such as AgentSpeak(L) [2], Gwendolen,
GOAL, SAAPL [24], and ORWELL [8] [13] [23] [28]. My approach
encodes each state with its beliefs, allowing no additional computa-
tion for safety checking. This state encoding is easily expressible in
the PRISM language, unlike in CTL model checkers such as SPIN
[19] and NuSMV [6]. A finite transition system can be converted
into a semantically equivalent finite discrete-time Markov chain
(DTMC) except for transition probabilities. Moreover, the verifica-
tion result of qualitative properties including safety and liveness
properties in a finite DTMC is irrelevant to the transition probabil-
ities [1]. Therefore, PCTL model checking is chosen to verify the
soundness of vGOAL specifications.

Figure 2 illustrates the workflow of the automated PCTL model
checking process. A translator was developed to convert a vGOAL
specification into a PRISM model, with two components: transi-
tion system generation and PRISM model encoding. The translator
generates the operational-semantically transition system from the
vGOAL specification and encodes it as a semantically equivalent
PRISM model except for transition probabilities. The translator and
a PCTL model checker (Storm or PRISM) will automatically gener-
ate a PCTL model checking analysis from a vGOAL specification.

Specification

Decision-Making Generation

PRISM Model Encoding

PCTL Model Checker

PCTL Model Checking Analysis

Translator

Transition System Generation

Figure 2: Automated PCTL Model Checking Process

3 FUTUREWORK
My future work includes two main directions. First, I plan to em-
ploy formal verification techniques, such as program verification,
to prove the correctness of the implementation of the vGOAL in-
terpreter. Second, I aim to investigate how a more sophisticated,
safe, and intelligent motion planning component can be integrated
into the agent-based decision-making module. Recent safe shield-
ing techniques [17, 20, 21, 25] enable reinforcement learning-based
control of autonomous systems in continuous state spaces while
ensuring safety. It would be valuable to integrate the recent shield-
ing techniques into the described agent-based decision-making
component to provide safety assurance for autonomous systems.
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