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ABSTRACT
For effective decision-making in the real world, artificial agents
need to take both the multi-agent as well as multi-objective na-
ture of their environments into account. These environments are
formalised as multi-objective games and introduce numerous chal-
lenges compared to their single-objective counterpart. For my main
contributions so far, I have established a theoretical guarantee that
a bidirectional link always exists that maps a finite multi-objective
game to an equivalent single-objective game with an infinite num-
ber of actions. Additionally, I presented an extensive study of Nash
equilibria in multi-objective games, culminating in existence guar-
antees under certain assumptions. From a reinforcement learning
perspective, I explored how communication and commitment can
help agents to learn adequate policies in these challenging environ-
ments. In this paper, I summarise my ongoing research and discuss
several promising directions for future work.
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1 INTRODUCTION
To be effective in real-world settings, artificial agents must be able
to navigate complex decision-making scenarios. In many settings
of interest, this is complicated by the presence of multiple agents
with whom cooperation and competition is possible [21]. To study
decision-making in these types of systems, game theorists define
solution concepts which are joint strategies that are stable in some
sense. A well-known solution concept is the Nash equilibrium, in
which agents have no incentive to unilaterally deviate from the
joint strategy and independently play their strategy without any
means of communication or correlation [6].

Multi-agent reinforcement learning (MARL), on the other hand,
focuses specifically on the acting aspect of decision-making. Agents
interact with their environment and each other with the goal of
learning adequate policies, possibly belonging to an equilibrium.
MARL and game theory are closely linked, with advances in one
area often benefiting the other [5, 18].
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An additional challenge in decision-making is the presence of
multiple conflicting objectives, particularly when agents are de-
signed to represent the interests of humans. This is further ampli-
fied in multi-agent settings, where each agent may have distinct
preferences or even different objectives. For example, a scientist
writing a paper may have conflicting goals of making the paper
concise yet thorough and novel yet centred in a relevant area. De-
termining the optimal trade-off between these objectives can be
difficult, and the preferred solution may vary depending on the in-
dividual. The field of multi-objective decision-making targets such
problems and provides methods to deal with this complexity [11].

Multi-objective games combine the multi-objective and multi-
agent aspects of decision-making, returning a vector-valued pay-
off instead of a scalar [1]. A popular model is the multi-objective
normal-form game (MONFG), which generalizes the classic normal-
form game. To deal with the vectorial payoffs, it is common to
accept a utility-based approach which assumes the existence of a
utility function for each agent [3, 10]. Note, however, that the utility
function need not be public knowledge or given a priori. As such,
it is often impossible or undesirable to reduce the multi-objective
to a single-objective game [8].

It is known that different optimisation criteria naturally arise
in the utility-based approach. Agents may optimise on the basis of
expected utility, as is commonly assumed in game theory, which
leads to the expected scalarised returns (ESR) criterion. On the other
hand, research in multi-objective reinforcement learning usually
considers agents that optimise for the scalarised expected returns
(SER) criterion, i.e. settings where the utility is derived from the
expected payoff [3]. It is known that the choice of optimisation
criteria influences which strategies are optimal [19] and even when
certain equilibria can be guaranteed to exist [9].

Despite progress in related fields, multi-objective games are
largely unexplored, with a lack of results regarding the existence of
equilibria and efficient computational approaches for learning or
computing optimal strategies. Given their relevance in modelling
real-world settings, continued research on these aspects is vital.

2 RELATING MULTI-OBJECTIVE TO
SINGLE-OBJECTIVE GAMES

In games where agents aim to optimise their expected utility, i.e. the
ESR criterion, it is possible to reduce the multi-objective game to a
single-objective game when utility functions are known. Intuitively,
this is because the utility function can be applied to the payoff
vectors, resulting in an equivalent single-objective game. When
optimising for SER, however, it has been shown that this is not
possible when agents have nonlinear utility functions. Consider for
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example the payoffs (2, 0) and (0, 2) and the product utility function
𝑢 (𝑝1, 𝑝2) = 𝑝1 · 𝑝2. For a uniform mixture over the two payoffs, the
utility of the expected payoff is equal to one but is different than
the expected utility of the payoffs which is equal to zero. Moreover,
for nonlinear utility functions, it is not guaranteed that a Nash
equilibrium exists, which stands in stark contrast to results from
single-objective games [9]. This is particularly relevant as humans
often have nonlinear utility functions [7, 16]. To better understand
the dynamics of these games and connect them to other established
concepts in game theory, it is therefore crucial to further investigate
the properties of MONFGs.

In recent work, we introduce a novel equivalence notion, called
pure strategy equivalence, that relates MONFGs to single-objective
games with continuous action spaces, referred to as continuous
games [15]. We showed that a bidirectional link can be constructed,
which maps a game from one class to the other while preserving
underlying dynamics such as Nash equilibria. As a consequence, it
becomes possible to translate theoretical results from continuous
games to MONFGs. Additionally, as MONFGs can be represented in
a succinct matrix format with a finite number of actions, it opens
the possibility of designing algorithms that leverage this structure
to tackle continuous games. We demonstrate this by designing a
fictitious play algorithm for multi-objective games and using this
to learn Nash equilibria in different continuous games.

3 NASH EQUILIBRIA IN MULTI-OBJECTIVE
GAMES

The existence and computation of Nash equilibria is a central ques-
tion in game theoretic research. In multi-objective games, this ques-
tion has been explored in settings with unknown utility functions,
leading to the introduction of Pareto Nash equilibria [4, 17]. When
utility functions are known, previous work has shown that MON-
FGs under ESR can be reduced to single-objective games [9]. For
games under SER, however, comparatively little is known.

Recently, we contributed an extensive study of Nash equilibria
in MONFGs [13]. In our work, we derive conditions such that exis-
tence is guaranteed under SER and computation becomes feasible.
Specifically, we show that Nash equilibria can be guaranteed to ex-
ist when assuming only quasiconcave utility functions. Such utility
functions are a generalisation of concave functions and imply that
agents prefer an average payoff for all objectives over extremes [2].
On the other hand, we showed that no such guarantee is possible
for strict convex utility functions, thereby also precluding existence
guarantees under convexity or quasiconvexity.

As computing Nash equilibria under ESR is feasible by first per-
forming the reduction to a single-objective game, it is useful to find
conditions such that an equilibrium under ESR is also one under
SER. Unfortunately, we demonstrate that no general relation be-
tween ESR and SER exists. However, when restricting our attention
to pure strategy Nash equilibria, i.e. equilibria where strategies
are deterministic, we find that equilibria are shared when agents
have quasiconvex utility functions. Additionally, we show that this
extends to settings where a subset of agents optimises for ESR
while others optimise for SER. Finally, we contributed an efficient
algorithm that combines these results to compute all pure strategy
Nash equilibria.

4 LEARNINGWITH COMMUNICATION
In challenging environments, it may be infeasible to compute equi-
librium strategies a priori. Additionally, even when computation
is feasible, there may be multiple equilibrium strategies with no
obvious choice for which equilibrium to play. In MARL, these chal-
lenges are addressed by enabling agents to learn which strategies
to play in response to the other agents in the environment.

In multi-objective games, independent actor-critic learning has
been proposed with a modified objective function to directly op-
timise the utility from the expected returns [22]. We extend this
approach by introducing communication protocols that encour-
age agents to learn adequate policies through iterative play of the
MONFG [14]. In each iteration, one agent is designated as the leader
and the other as a follower. The leader is then required to commit
to some strategy after which the follower is allowed to condition
their response on the commitment, analogous to the mechanism of
a Stackelberg game [20].

We introduce variations for collaborative and self-interested
agents, where each variation prescribes what type of commitment
the leader can make and how the follower may react. First, we
present two cooperative protocols where the leader either commu-
nicates their next action or current policy and the follower per-
forms a policy update based on this information. Notably, agents
are forced to lead and follow with the same policy. While stable
policies may not exist, we find that these protocols punish agents
that deviate too much from a suitable middle ground and thus
encourage cooperation.

Next, we presented a self-interested variant where agents are al-
lowed to learn distinct best-response policies for each commitment
and lead with a different policy than when following. We observed
that agents cycled through two policies, one when leading and one
when following. Interestingly, these learned policies may consti-
tute cyclic equilibria. We performed a follow-up study where we
demonstrated that cyclic equilibria can be rational in MONFGs [12].

5 FUTUREWORK
The overarching goal of my research is to develop a comprehensive
understanding of multi-objective games and design computational
techniques that can effectively compute or learn equilibria. With
this goal in mind, there are a number of interesting areas I aim to
explore for future work.

First, I believe that the novel bidirectional link between MONFGs
and continuous games presents exciting opportunities for further
research. I aim to study the design of general algorithms for MON-
FGs and investigate the possibility of applying these methods to the
solution of complex continuous games or finding approximate so-
lutions through convenient approximate MONFG representations.
Additionally, Stackelberg games with convex strategy sets have
been studied in the literature [20]. I aim to explore how the link can
provide novel insights and contributions to this area of research.

Furthermore, I aim to study techniques that enable decision
support in multi-objective games where agents represent human
interests. As it is often difficult for humans to exactly specify their
utility function, it will be necessary to develop interactive solutions
that can learn both the preferences of the user and optimal play in
the game.
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