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ABSTRACT
Contests are games where agents compete by making costly and
irreversible investments to win valuable prizes. They model di-
verse scenarios ranging from competition among Bitcoin miners to
crowdsourcing. My work has touched upon the following topics in
contests theory: (i) design of contests to get a moderate output from
many agents rather than a very high output from a few; (ii) design
of contests to get higher output from an underrepresented group
of agents; (iii) existence, computational complexity, and price of
anarchy of equilibria in a model where agents participate in several
simultaneous contests; (iv) convergence of best-response dynamics
in contests. In addition to the above, my ongoing work focuses
on topics in contest theory like learning dynamics in contests and
analysis of contests where groups of agents (and not just individual
agents) compete to get an outcome that affects all of them.

More broadly, I have also worked on the following topics: (i)
improved, near-optimal algorithms for restless multi-armed bandits
with applications to healthcare; (ii) analysis of coalition formation
dynamics for deliberation.
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CONTESTS
Contests are games where agents invest effort and produce output
to win valuable prizes, the investments are costly and irreversible,
and the prizes are allocated based on the outputs. Contests model
many practical problems, from crowdsourcing to labor markets.
Due to their generality and wide use, several models have been
studied in the literature [16].

Diversity in Contests
One of the primary motivations for organizing contests is to elicit
effort from participants. For example, olympiads and hackathons en-
courage students to put effort and learn about specific subjects and
technologies. In these contests, the designer wants to select a prize
allocation mechanism to incentivize the agents to produce higher
output, and the dominant paradigm is to incentivize the agents to
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produce a higher total output [13]. In such models, the designer
values the contribution from each agent equally, i.e., the marginal
output produced by any agent contributes the same marginal value
to the designer’s objective.

In many practical applications, the designer may want to elicit an
adequate output from several agents instead of a very high output
from a few agents. For example, in a crowdsourcing task, such
as a survey, it may be more valuable to get many contributors to
give adequate responses than to get a few people to submit perfect
responses. In [4], we designed contests to optimize such objectives.
These contests can get good participation from many agents rather
than a very high output from a few, or they can target a specific
segment of agents based on their output level, like incentivizing
agents to produce moderate output and giving less importance to
agents producing very high or very low output.

In other applications, it may be important to elicit higher partici-
pation from a protected group. Many competitions and hackathons
are organized to elicit engagement from underrepresented groups,
e.g., hackathons to get women interested in AI [12]. Contests are
widely used for crowdsourcing, which is also an important source
of training data for machine learning algorithms; in this context,
eliciting input from disadvantaged groups is particularly important,
as it helps the algorithms learn decision-making rules that reflect
the opinions and preferences of such groups. Our work provides a
better understanding of how to encourage contributors from such
a target group [6]. Our intended follow-up work is to relax certain
assumptions made in our models, e.g., study some general prize
structures and non-linear cost functions.

Simultaneous Contests
In many applications, including the ones mentioned earlier, agents
may have to choose among several contests, e.g., in crowdsourcing,
an agent has several choices of projects. Simultaneous contests—
where multiple contests run in parallel and the agents have to
strategically allocate their limited resources across the contests—
are natural extensions of the standard single-contest models.

In [7], we study a model where contests allocate prizes based
on equal sharing: each contest awards its prize to all agents who
satisfy some contest-specific criterion, and the value of this prize to
a winner decreases as the number of winners increases. The agents
produce outputs for a set of activities, and the winning criteria of
the contests are based on these outputs. We show the existence,
computational complexity, and price of anarchy of equilibria in
these games. In particular, the complexity of computing a mixed
Nash equilibrium in a version of these games is complete for the
class PPAD∩PLS [1, 9].

Despite previous attempts, simultaneous contests are less well
understood than their single-contest counterparts. We intend to
make progress by assuming a large number of agents, where each
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agent has minimal influence on the outcome. Simultaneous contests
also lead to new mechanism design problems not present in a single
contest. For example, consider the blockchain platform Cardano,
which uses crowdsourcing to get quality reviews for proposals to
make changes to the platform [2]. Cardano incentivizes reviewers
by providing rewards for quality reviews. This leads to a game of
simultaneous contests. In addition to maximizing the number and
the quality of the reviews the proposals get, we want to have good
coverage of reviews across the proposals.

Best-Response and Learning
Contests are studied using either complete or incomplete infor-
mation models. In a complete information model, we assume that
each agent exactly knows her own ability and the ability of every
other agent, and the agents play rationally to reach a Nash equilib-
rium. On the other hand, in an incomplete information model, an
agent does not exactly know the abilities of the other agents but
has distributional knowledge; and based on this information, the
agents reach a Bayes–Nash equilibrium. Both these models make
strong assumptions about the information available to the agents,
whether exactly knowing the abilities of the other agents or exactly
knowing the distribution. These models also assume fully rational
behavior. Such assumptions may not hold in practice.

Learning dynamics, e.g., best response and fictitious play, are
alternative techniques for analyzing strategic games. These models
make weaker assumptions regarding the cognitive ability of the
agents and the information available to them. In our upcoming
work [10], we study the convergence of best-response dynamics in
Tullock [15] contests. For non-homogeneous agents, we show that
best response dynamics may not converge, but for homogeneous
agents, we show very fast convergence: the agents reach an 𝜖-
approximate equilibrium in Θ(log log(1/𝜖)) steps for two agents
and in Θ(log(1/𝜖)) steps for three or more agents.

We are working on a few others problems related to learning
in contests. Fictitious play is known to converge for all-pay and
Tullock contests with two agents, but for more agents, convergence
has not been (dis)proven. We are also looking at learning in models
where agents only see the outcome of the contest (allocation of the
prizes) but not the actions of the agents.

Some Other Directions in Contest Theory
Fairness. Scholarships and funding are generally allocated by mech-
anisms that naturally induce competition among the applicants. In
these scenarios, it is crucial to allocate the resources fairly and to
understand the effect of a given allocation scheme on the behavior
of the agents. Although several design objectives have been consid-
ered for contests (e.g., [3, 4]), fairness has largely remained unex-
plored. We plan to introduce well-motivated fairness objectives into
standard models like Tullock [15] and rank-order allocation [13].

Repeated Contests. Contests are generally modeled as one-stage
simultaneous games, and the recommended prize structure is to
allocate the entire budget to the first prize (for natural models,
e.g., [13]). The intuition is that a larger first prize incentivizes the
stronger agents to put in more effort, which outweighs the opposite
effect on the weaker agents due to smaller prizes for lower ranks.
But, intuitively, there may be second-order effects of such design

choices in the longer run. The weaker agents may get demotivated,
which may change the distribution of the types of agents in future
contests. This may decrease competition and lead to lower output.
Our goal is to model such effects using repeated contests and study
the design of contests that achieve long-term higher output.

Group Contests. Consider an election where it is costly for an agent
to vote, and an agent gets a weight in the decision-making pro-
portional to his costly investment. A similar situation occurs in
proof-of-stake cryptocurrencies, where an agent gets voting rights
in proportion to the amount of his stake that gets blocked, which
leads to opportunity costs. An agent 𝑖 would want to bear a higher
cost and larger voting weight if his vote can affect the outcome,
which depends upon how the agents who have a similar preference
to 𝑖 are doing as a group in comparison to other groups of agents.
We intend to study these games by modeling them as contests.

OTHER TOPICS
Restless Multi-Armed Bandits (RMABs). An RMAB [17] is a gen-
eralization of a multi-armed bandit where multiple arms can be
pulled simultaneously and the arms that are not pulled can also
change their states. The planning problem for RMABs is PSPACE-
hard [14]. The most popularly used algorithm, called the Whittle
index policy [17], is a heuristic based on a Lagrangian relaxation
that has asymptomatic optimality guarantees under certain con-
ditions. These conditions required for the asymptotic optimality
of Whittle are hard to verify for most practical problems, but prac-
titioners still use it hoping that the bad instances do not occur
naturally. In [11], we show that this is not true. We provide simple
and natural examples where Whittle fails. Second, we study a mean-
field based approximation algorithm and provide non-asymptotic
high-probability approximation guarantees (which implies asymp-
tomatic optimality), and these results hold unconditionally, unlike
Whittle. For two applications, maternity healthcare intervention
and tuberculosis monitoring, we show that our algorithm performs
better than alternatives in simulations based on real-life data.

Deliberative Coalition Formation. We study a dynamics for deliber-
ative coalition formation where agents dynamically form coalitions
around proposals that they prefer over the status quo [8]. The de-
liberation works through compromise moves, where agents from
several (current) coalitions come together to form a larger coali-
tion to support a (perhaps new) proposal, possibly leaving some of
the agents from their previous coalitions, who do not support the
new proposal, behind. A deliberation succeeds if it terminates by
identifying a proposal with the largest possible support. It has been
previously shown that compromise moves, involving a small num-
ber of coalitions in each move, may lead to successful deliberation
in polynomially many steps [8]. Our work [5] resolved several open
problems; we showed that for a successful deliberation, the follow-
ing may happen: (1) agents from a very large number (exponential
in relevant parameters) of coalitions have to simultaneously join
forces to form a larger coalition; (2) the sequence of compromise
moves may be exponentially long; (3) even for a sequence of com-
promise moves that are polynomial in length, it may be NP-hard to
make some of the moves in the sequence.
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