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ABSTRACT
Unmanned Aerial Vehicles (UAVs) are a versatile platform that can
be used for many data collection applications including emergency
response, environmental monitoring, and military intelligence col-
lection, among many others. This extended abstract summarizes
our recent advancements in the field of single and multi-UAV route
planning and cooperation, with a focus on quadrotors. We first look
at how to plan efficient paths and adapt vehicle speed to minimize
mission completion time in the presence of energy constraints of
UAVs in problems where a single UAV must visit a series of way-
points and then rendezvous with a moving ground vehicle. We then
look at a holistic approach for route planning and deploying a team
of UAVs to collect data from wireless sensors while minimizing
data collection latency. The abstract concludes with a summary of
future research directions.
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1 INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are commonly proposed as a so-
lution for various data collection and monitoring problems due to
their versatility and commercial availability. In particular, quadro-
tors have seen a lot of attention in recent research due to their
mobility and affordable price. Quadrotors can take off vertically,
travel long distances, stop and hover over areas of interest and cary
payloads. A lot of research has studied how to use quadrotors for
surveillance [10, 17, 18], environmental monitoring [21, 22], data
collection in wireless networks [1, 6], package delivery [12, 14]
and disaster response [15, 20], among many others. In this doctoral
dissertation research, we will look at problems relevant to UAVs
with a focus on quadrotors, hereafter referred to as drones.

A common method for planning and coordinating drone actions
is to transform the scenario into a traditional graph theory problem
then solve it using mathematical optimization or heuristic-based
algorithms. Many works transform the problem into the Traveling
Salesman Problem (TSP) [11, 19, 22, 24], a well studied problemwith
both optimal and near optimal algorithms [4, 16]. Other popular
graph theory problems seen in drone planning research include
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the Vehicle Routing Problem (VRP) [10] and the orienteering prob-
lem [21]. Researchers often make assumptions about the physical
characteristics of drones to fit these problems into well studied
graph theory algorithms. However, these assumptions are often too
optimistic and do not accurately account for real-world behavior.

Although versatile, drones have limitations such as limited on-
board energy or limited communication capabilities. Most drones
are powered by on-board batteries that can quickly be depleted.
When the assigned task requires the drone to operate beyond its
energy limitations, the drone must stop to recharge or have its
batteries swapped out during mission execution. Due to limited
carrying capacities and energy, drones are normally equipped with
low-grade wireless communication equipment. Communication
limitations can restrict the communication distance and data trans-
fer bandwidth. These requirements must be considered when plan-
ning actions for both single and multi-drone applications.

In this extended abstract, we summarize our recent work on plan-
ning and coordination for drones while adhering to realistic energy
and communication constraints. Our work asks the question: Can
we improve how we model the physical world in planning algo-
rithms and does updating these models lead to better algorithms?

2 UAV PLANNINGWITH ADAPTIVE SPEED
Traditional energy models are usually based off of flight time or
travel distance. However, recent works have shown that drone
power consumption is determined by drone speed, creating the
velocity-based drone energy model [7, 23]. Using this model, we
showed that there is a trade-off between extending the total travel
distance of the vehicle and maximizing the speed of the vehicle.

We exploited the relationship between velocity and power con-
sumption in a routing problem where a drone must visit a series
of waypoints before rendezvousing with a moving ground vehicle
while minimizing mission completion time [3]. In many drone ap-
plications, the objective is to use the drone to gather information as
fast as possible. In applications such as maritime search and rescue
or military reconnaissance the user deploying a drone may need
to continue moving and cannot wait in a single location for the
drone to return. An example of this is a ship that cannot stop and
wait for the drone to complete its mission. In these scenarios, high-
level route planning algorithms must account for user movements
in addition to traditional constraints such as limited on-board en-
ergy. Adding our realistic energy model to this scenario requires
the drone to periodically return to the moving user to swap-out
batteries, incurring a time penalty. We termed this problem the
Minimum-Time while On-The-Move problem.

To solve our Minimum-Time while On-The-Move problem, we
designed an iterative algorithm that simplifies the problem by fixing
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or estimating parts of the larger problem. We first fix the number
of times the drone must rendezvous with the ground vehicle then
estimate the total mission time. This allows us to formulate the
problem into a variation of the multiple depot, multiple terminal,
Hamiltonian path problem with fixed start and stop points. Using
the results of this Hamiltonian path problem variation, we update
our predicted total mission time and repeat the process until we
find a consistent solution.

We proposed two approaches to solve the multiple depot, mul-
tiple terminal, Hamiltonian path problem with fixed start and
stop points: a mathematical optimization-based approach and a
heuristics-based approach. For the optimization-based approach,
we formulated a Mixed-Integer Non-Linear Program (MINLP), us-
ing a variation of the Miller-Tucker-Zemlin formulation [5, 13]
that minimizes the total mission completion time while optimizing
the vehicle’s speed. In the heuristics-based approach, we first use
Lloyd’s k-means cluster algorithm [8] to form subtours between
stops with the ground vehicle. This turns the problem into a TSP
instance, which we solve using commercial solvers. We then select
speeds for each subtour that minimize the completion time.

We evaluated our approach on a variety of simulations and a
physical testbed. For the simulations, we compared our two ap-
proaches against a baseline adapted from [9] on inputs with way-
points ranging from five up to 80, at increments of five. Fig. 1
shows an abbreviated version of our results. We found an average
improvement of 23.8% and 14.5% for the MINLP and heuristics-
based approaches, respectively, in mission completion time over
the baseline approach (Fig. 1 top). We further evaluated how sched-
uling speed improved mission completion time while using the
heuristics-based approach (Fig. 1 bottom). We found an average of
11.9% compared to moving at max speed, 𝑣𝑚𝑎𝑥 , 31.9% compared to
moving at max-distance speed, 𝑣𝑜𝑝𝑡 , and 47.1% compared to moving
at best endurance speed (i.e the speed the maximizes flight time),
𝑣𝑏𝑒 .

To demonstrate how our solution can be applied on real-world
scenarios, we prototyped our problem and solution on our own
custom physical testbed [2]. More details on our physical experi-
ments as well as more simulation results can be found in the full
publication [3].

3 MULTI-UAV PLANNING FOR DATA
COLLECTION

In ongoing research, we are looking at how to deploy a team of
drones to collect data from wireless-enabled sensors. In environ-
mental monitoring scenarios, sensors are often deployed in remote
locations to record natural phenomena such as air quality or water
samples from streams. We propose using a team of drones to peri-
odically collect data from the sensors via wireless data transfer (e.g.
IEEE 802.11).

We are taking a holistic approach to this problem, where we first
plan data collection routes using an offline algorithm then look
at online strategies for adapting drone behavior during mission
execution. For offline planning, we have been looking at ways to
adapt the capacitated Vehicle Routing Problem to our data collec-
tion problem. For an online algorithm, we have been motivated
by the following question: what should a drone do if it stops at a
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Figure 1:Mission completion time forMINLP and heuristics-
based approach (k-IP) versus baseline (top) and percent im-
provement with speed scheduling compared to fix speeds
(bottom).

waypoint assigned offline but cannot communicate with the wire-
less sensor? We have been considering hybrid approaches for this
problem where we derive a plan prior to deployment then adapt
that plan as needed online.

4 FUTURE DIRECTIONS
In future research, we plan to investigate decision making in hybrid
centralized-decentralized systems. A centralized machine can make
real time decisions for connected agents but not all agents in the
system are guaranteed to be connected to a centralized system
and must operate with what information is available to them. A
hybrid-connected system creates unique challenges in decentralized
decision making for autonomous agents. There is a trade-off in
performance at a given task when operating in a disconnected state
compared to moving to reconnect to the larger system to update
state knowledge.

We would like to further investigate this trade-off, determine
how this trade-off impacts decision making for autonomous agents,
and apply our solutions on physical drone testbeds to validate
their feasibility in the real world. We are particularly interested
in decision making where an all-knowing oracle could make an
optimal decision for each agent but the agents themselves do not
have enough information to make these decisions and must bal-
ance accomplishing their task with staying informed by a central
computer.
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