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ABSTRACT
Deep Reinforcement Learning agents typically aim to learn a task
through interacting in a particular environment. However, training
on such singleton RL tasks, where the agent interacts with the same
environment in every episode, implicitly leads to overfitting. Thus,
the agent fails to generalize to minor changes in the environment,
especially in image-based observation. Generalization is one of the
main contemporary research challenges and recently proposed en-
vironments that enable diversified episode generation opens up the
possibility to investigate generalization. My initial work towards
this objective includes representation learning through the partial
decoupling of policy and value networks and hyperbolic discount-
ing in a single-agent setting. Efficient exploration is another crucial
aspect of achieving generalization when learning from limited data.
My dissertation would focus on proposing and evaluating meth-
ods that enable better representation learning and exploration for
unseen scenarios. Another key objective is to extend my work to
multi-agent generalization which is comparatively less studied.
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1 INTRODUCTION
The recent advances in deep learning, in particular, deep neural net-
works, have enabled intelligent agents that are capable of mastering
complex tasks. As these learning agents are built based on the idea
of minimizing empirical prediction error, they tend to memorize the
underlying data distribution which is often termed as overfitting. In
Reinforcement Learning (RL), where an agent learns from sampled
state-action pairs, the agent overfits to the training trajectories [16]
[2]. Thus the agents’ ability to generalize in unseen contexts is
compromised, however, generalization and faster adaptation capa-
bilities are paramount factors to ensure reliable performance in the
real-world application where the agent regularly gets exposed to
unseen scenarios or environments not encountered during training.
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The issue of overfitting and subsequent lack of generalization
becomesmore critical while learning from visual data. Learning con-
trol tasks directly from visual observation is challenging, especially
in a real-world setting, where the observations are particularly
more unstructured and diverse [21]. Given infinitely many samples
of realistic images the agent may learn an optimal behavior. How-
ever, an unlimited supply of real images beyond simulation is often
expensive and impossible. Thus, learning representation, a smaller
vector encoding that can capture adequate information, remains
an efficient solution to learning from limited data.

While in RL algorithms the main objective is to maximize the
cumulative reward over the episodes, optimizing the policy, rep-
resented through a deep neural networks-based function approxi-
mator, just for that objective doesn’t necessarily guarantee better
representation learning. Implicitly learning the representation can
be sufficient to learn the sampled training trajectory and predict
actions, however, a small perturbation to the visual state brings a
drastic change in the policy and causes failure. Recently, learning
task-relevant representation, which is invariant to task-agnostic
factors, received much attention as this helps to achieve generaliza-
tion. To learn a representation that is task-relevant and agnostic of
the irrelevant dynamic elements present in the observation, explicit
measures are often necessary such as minimizing the bisimulation
distances of the states, decoupling the policy and value representa-
tion, and learning contrastive behavioral similarity [16] [21].

My dissertation research focuses on learning representations to
avoid spurious correlations between the learned policy and task-
irrelevant information and evaluate them on environments under
the Contextual Markov Decision Process Framework, which pro-
vides a structured way to quantify an agent’s ability to generalize.
My current research includes investigating non-trivial sources of
task-relevant information and uncertainty handling such as atten-
tion mechanisms, complex discounting schemes, and value target
augmentation. Another aspect of my research is to enable repre-
sentation learning with minimum overhead as opposed to the most
proposed approaches that compromise computing time, introduce
complex design choices, or bring in a lot of new hyperparameters.

2 PROBLEM FORMULATION
We consider a Contextual Markov Decision Process (CMDP) given
byM = (S,A, C,T , 𝑟 , 𝜇𝐶 , 𝜇𝑆 ) where S is the state space, A is the
action space, C is the context space, T (𝑠′ |𝑠, 𝑎) is the transition func-
tion, 𝑟 is the reward function, 𝜇𝐶 is the context distribution, and 𝜇𝑆
is the context-dependent initial state distribution. At the beginning
of each episode, a context is sampled according to 𝑐 ∼ 𝜇𝐶 . Then an
initial state is sampled according to 𝑠0 ∼ 𝜇 (·|𝑐) and the successive
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states within that episode are sampled based on 𝑠𝑡+1 ∼ T (·|𝑠𝑡 , 𝑎𝑡 , 𝑐).
Let 𝑑𝑐𝜋 denotes the state distribution resulting from acting with the
policy 𝜋 in context 𝑐 . During training, the agent is exposed to a
limited number of contexts which is far smaller than the whole set
of contexts on which the agent is being tested. The goal is to learn
a policy 𝜋 that maximizes the expected return over all possible
contexts such that G = E𝑐∼𝜇𝐶 ,𝑠∼𝑑𝑐𝜋 ,𝑎∼𝜋 (𝑠 ) [𝑟 (𝑠, 𝑎)] while learning
from those limited contexts. The context parameters generally take
the form of an initial seed, identifier, or parameter vector that de-
termines the variation of an episode. Those parameters are not
observable by the agent. The context remains the same within an
episode but varies between episodes. This formulation can easily be
extended to multi-agent scenarios where the agents share the same
action space, however, the state observation varies agent-wise.

3 RELATEDWORK
Various techniques from the general deep learning domain have
been employed to improve the generalization ability of deep RL
agents. Such approaches include regularization techniques such
as dropout, batch normalization, and data augmentation [3, 4, 9,
10, 17, 19, 20, 22]. To encourage task-specific policy representation,
Raileanu and Fergus [16] proposed decoupling the policy and value
networks to disentangle the policy representation from value rep-
resentation. Cobbe et al. [5] used decoupled architecture but with
phase-wise training to avoid the interference between policy and
value. Furthermore, bisimulation metrics and policy similarity em-
beddings have been proposed to measure state similarity, leading
to task-relevant representations [1, 21]. Recently, language models
have been used for history compression to enable memory to store
abstractions of the observations [15]. Previous works that address
the issue of exploration for generalization include [7, 8, 14]

4 PRELIMINARYWORKS
4.1 Partial Decoupling of Actor and Critic
This research aims to address policy-value representation asymme-
try, a major cause for the lack of generalization [16], in an efficient
way. I introduce an Attention-based Partially Decoupled Actor-
Critic (APDAC) that shares some early convolutional layers of the
network while separating the later (downstream) ones into policy
and value sub-networks [13]. This partial separation of networks
acknowledges the asymmetry in representation between policy and
value, and thus encourages distinct feature learning for each, while
still allowing shared low-level (edges, dots) representation learning
through early shared layers. Sharing some of the layers enables the
joint optimization of policy and value, reducing the high cost of two
separate optimizations for policy and value networks as needed in
IDAAC [16]. The inclusion of the channel-wise attention mecha-
nism ensures learning minimal and compact representations that
eliminate spurious correlations between generic features (e.g., back-
ground color) and the value/policy function. Using a gradient-based
heatmap generation technique, this work produces visualizations
that reveal crucial insights into the learned policies and value repre-
sentations. Being an architectural contribution this hybrid network
architecture can be used with any actor-critic algorithm to achieve
generalization. An extension of this work analyzes how the extent
of policy-value decoupling impacts generalization [11].

4.2 Hyperbolic Discounting
This aspect of my research investigates the influence of learning
from hyperbollically discounted advantage estimates on the gen-
eralization ability of an agent [12]. We identify that variations of
contexts come with an additional phenomenon that the completion
time may vary drastically based on the contexts. This completion
time can be interpreted as survival time and linked to the hazard
rate of the environment. Exponential discounting of future rewards
implies the assumption that the agent in the environment encoun-
ters a fixed, known risk or hazard [18]. The hazard rate is defined
as the per-time-step risk the agent incurs as it acts in the environ-
ment. My work hypothesizes that this assumption of a fixed hazard
rate for the agent in an environment does not hold in a procedu-
rally generated environment that is based on CMDP (levels are
analogous to contexts). This is because the variation in the environ-
ment’s dynamics and attribute distribution across levels introduce a
greater degree of uncertainty and stochasticity compared to typical
reinforcement learning scenarios. Fedus et al. [6] shows that when
an agent holds uncertainty over the environment’s hazard rate, a
non-exponential (such as hyperbolic) reward discounting scheme
is more appropriate. Thus, this work proposes to leverage hyper-
bolically discounted advantage estimates in policy optimization to
enable learning representation that considers the unknown hazard
due to a variety of contexts and achieves generalization.

5 RESEARCH PLAN
5.1 Robust Exploration
Efficient exploration is a prerequisite for better representation learn-
ing. If the agent fails to explore the state space adequately, especially
in limited data settings, it will lose important information perti-
nent to state representation. [8] shows that the exploration task
poses more difficulty in the CMDP setting as the chance of visiting
the same state reduces drastically. This is mainly due to the fact
that added variation or even noise can change the state in terms
of visual appearance while keeping the states semantically similar.
Thus, learning a representation that preserves semantic meaning in
the encoding will facilitate generalization. Future work will include
developing a soft count for the states based on semantic similarity.

5.2 Multi-Agent Systems
Going forward and based on the successful outcome in a single-
agent setting, my research plan is to extend the representation
learning and exploration framework to multi-agent settings. I want
to explore how representation learning can be improved in a proce-
durally generated multi-agent system. The broad idea is to learn
a joint representation using different value estimates predicted by
the agents. I plan to incorporate attention mechanisms that can
prioritize spatial objects relevant to the task and the corresponding
agent. Also, I will develop efficient exploration strategies for multi-
agent systems based on shared knowledge of the agents about the
state space. As a test bed, I will use Neural MMO, a multi-agent en-
vironment that includes procedural generation of tile-based terrain,
a food and water foraging system, and a strategic combat system.
The environment also provides an easier way to visualize learned
value functions, visitation maps, and inter-agent dependencies.
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