
TDD for AOP: Test-Driven Development for
Agent-Oriented Programming

Cleber Jorge Amaral
Federal Institute of Santa Catarina

São José, Brazil
cleber.amaral@ifsc.edu.br

Jomi Fred Hübner
Federal University of Santa Catarina

Florianópolis, Brazil
jomi.hubner@ufsc.br

Timotheus Kampik
Umeå University and SAP Signavio

Umeå, Sweden
tkampik@cs.umu.se

ABSTRACT
This demonstration paper introduces native test-driven develop-
ment capabilities that have been implemented in an agent-oriented
programming language, in particular as extensions of AgentSpeak.
We showcase how these capabilities can facilitate the testing and
continuous integration of agents in JaCaMo multi-agent systems.

KEYWORDS
Agent-Oriented Programming, Engineering Multi-Agent Systems,
Test-Driven Development

ACM Reference Format:
Cleber Jorge Amaral, Jomi Fred Hübner, and Timotheus Kampik. 2023.
TDD for AOP: Test-Driven Development for Agent-Oriented Programming.
In Proc. of the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 – June
2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION
Agent-Oriented Programming (AOP) [9] is a programming para-
digm that provides first-class abstractions for instilling autonomous
behavior into software systems. Over the past decades, research
on AOP has emerged as a key direction within the domain of Engi-
neering Multi-Agent Systems (EMAS), leading to the development
of a diverse range of tools and platforms that support AOP [8].
While these technologies have not yet been widely adopted by the
software engineering mainstream, from an academic perspective,
the technology ecosystem can be considered thriving [7].

In modern software tool-chains, testing and Quality Assurance
(QA) plays a major role. This applies in particular in the context
of (at least partially) autonomous and distributed agent-oriented
systems, where reliable governance is a key concern [6] and imple-
mentation or operation errors can have disastrous consequences [5].
Although first works that are concerned with the development of
QA-related capabilities for AOP have recently emerged [1, 2], so far,
no testing utilities for any agent-oriented programming language
appear to exist. In this paper, we address this issue by presenting
testing capabilities for the AgentSpeak AOP language, in partic-
ular for the AgentSpeak dialect that is supported by the Jason
interpreter [4], which in turn is part of the JaCaMo framework [3]
for developing multi-agent systems. We conceptualize the testing
approach, describe its architecture, provide examples, and finally
conclude the paper with a future outlook.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

2 TEST-DRIVEN DEVELOPMENT FOR
AGENT-ORIENTED PROGRAMMING

In modern software engineering, developers commonly apply Test-
Driven Development (TDD) approaches, in which a large portion
of the tests is written during or even ahead of the implementation
of the actual program code. The assumption is that specifying the
exact desired behavior of a software component before or alongside
the implementation facilitates a more rigorous assessment of the
component and ensures testing is not cut short because of time
shortage caused by incorrect or imprecise estimations. Generally,
it is considered good practice to focus automated testing efforts on
unit tests of small components that can and hence should be tested
in a rigorous manner. The overall system (or system of systems) can
then be covered with less dense integration tests and End-to-End
(E2E) tests. The latter cannot cover all possible input and envi-
ronment configurations because of the explosion in combinatorial
options (even for fairly small systems) but they can potentially
catch unexpected behavior of components that seemingly work
correctly from a lower-level perspective.

Figure 1: Overview: proposed levels of agent-oriented test-
ing.

From an agent-oriented view, unit tests cover behavior that is
independent of the agent abstraction and that can be tested as
a function, rule, or method call without side effects: the agent’s
internal state, the environment and the states and behaviors of
other agents do not play a role in this context. In contrast, single
agent tests rely on the agent’s internal state (its beliefs) or the state
of the environment, whereas multi-agent tests consider interac-
tions with other agents (analogous to how integration tests verify
the interaction of several software components). Finally Full MAS
(Multi-Agent System) tests cover the entire software system end-to-
end (E2E), even considering non-MAS components such as reactive
Web services or graphical user interfaces. Figure 1 depicts the test
pyramid from a traditional software engineering perspective and
contrasts it with an agent-oriented test pyramid. Note that concep-
tually, we consider end-to-end full MAS tests as out-of-scope for a
testing technology that is tied to a specific AOP language because

Demonstrations
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

3038



traditionally, end-to-end tests are not provided by programming
language-specific test suits.

The testing features introduced in this paper contributes to the
state-of-the-art technology-wise and conceptually. Regarding the
former, they are the first testing abstractions introduced to an AOP
language (unit level). Regarding the latter, they elevate the relevance
of goals for test-driven development, checking whether an agent
will eventually (or given a specific time constraint) reach a goal,
either in a single-agent or multi-agent setup (single agent and multi-
agent level). A demonstration video is available at https://youtu.be/
395OHpuCILs.

3 TESTING CAPABILITIES OF JACAMO
To cover the three lower levels of the agent-oriented test pyramid as
displayed in Figure 1, an AOP testing feature has been implemented
for JaCaMo. JaCaMo’s agent-oriented testing feature allows for
the instantiation of one main agent per test file, as well as for the
instantiation of several mock agents; in addition to mock agents,
the main (to-be-tested) agent may interact with other agents (and
artifacts) that have been implemented in a traditional manner. The
tester agent inherits the abilities of the main agent, which enables it
to have testing plans that check whether the main agent can reach
an expected internal state (for example: belief adoption) or specific
goals. Whenever a corresponding assertion fires, the tester agent
reports the result (pass or fail). Figure 2 depicts the architecture
of the testing capabilities as described above. Note that a more
comprehensive tutorial is available online at https://github.com/
jacamo-lang/jacamo/tree/master/doc/tutorials/tdd.

ag1

ag2art1

prop1op1

my tester agents

tester1

tester2

my MAS app 
$ gradlew run

test framework 
$ gradlew test

test 
manager 

act/perceive importacl

Figure 2: Architecture: testing agents in JaCaMo.

Tests in JaCaMo are plans that have a test annotation (such as
@[test]) and that can test anything from a simple inference rule to
the interaction of several agents and artifacts. Let us provide some
examples that give an intuition of how tests are specified, starting
with the test of a rule that determines the Manhattan distance, as
provided below:
distance(X1,Y1,X2,Y2,D) :-

D = math.abs(X2-X1) + math.abs(Y2-Y1).

As the Manhattan distance between points (0,0) and (3,3) is
known to be 6, this rule can be straightforwardly tested using the
following testing plan:
@[test]
+!testDistance : distance(0,0,3,3,D) <-

!assert_equals(D0,6).

The testing of multi-agent systems, in which several agents in-
teract with each other and act upon artifacts, requires additional

features, e.g. for the instantiation of mock agents. For example, we
may want to instantiate several agents, pass messages between
them, and evaluate how the environment changes as a result of the
agents’ actions. Below, we test an agent that manages the tempera-
ture of a room, considering the preferences relayed to it by several
assistant agents. We first instantiate the agents, then have the as-
sistant agents communicate their preferences, and finally check if
the result on the environment (i.e., on the room temperature) is the
average of their preferences:
@[test]
+!test_multiple_preferences <-

.create_agent(mock_ra, "mock_room_agent.asl");

.create_agent(tims_assistant, "assistant.asl");

.create_agent(clebers_assistant, "assistant.asl");

.send(tims_assistant,tell,preferred_temperature(23));

.send(tims_assistant,achieve,send_preference(mock_room_agent));

.send(clebers_assistant,tell,preferred_temperature(25));

.send(clebers_assistant,achieve,send_preference(mock_room_agent));
!!pollTemperature;
.wait(temperature(24), 200, EventTime);
?temperature(T);
!assert_equals(24,T).

+!pollTemperature: temperature(24).
+!pollTemperature <-

.send(mock_room_agent,askOne,temperature(T));
!pollTemperature.

As an initial application of the JaCaMo testing features, parts
of the Jason code base were covered with new, agent-oriented
tests. Because some of the tests have Java-based counterparts, a
comparison of the testing approaches is possible. Below is a test of
Jason’s feature for setting random seeds, written in AgentSpeak:
@[test,atomic]
+!test_set_random_seed <-

.set_random_seed(20);
RET = math.random(10);
!assert_equals(7.320,RET,0.01).

The Java-based pendant to the test follows below:
public void testRandom() throws Exception {

Agent ag = new Agent();
ag.initAg();
new jason.stdlib.set_random_seed().execute(

ag.getTS(),
new Unifier(),
new Term[] { ASSyntax.parseNumber("20") }

);
InternalAction ia_r = (InternalAction) ag.getIA(".random");
double retFunc = new jason.functions.Random().evaluate(

ag.getTS(),
new Term[] { ASSyntax.parseNumber("10") }

);
assertEquals(7.320, retFunc, 0.01);

}

As can be seen, the AgentSpeak test is substantially more concise.
The Java-based test requires 15 lines of code and 521 characters
(without spaces). In contrast, the test written in AgentSpeak re-
quires five lines of code and merely 110 characters.

4 CONCLUSION
In this paper, we described the introduction and application of
test-driven development capabilities to the JaCaMo framework
for developing multi-agent systems and in particular to JaCaMo’s
AgentSpeak interpreter. Considering that AgentSpeak is not only an
agent-oriented, but also a logic programming language, future work
could, for example, study the introduction of testing capabilities to
other logic programming approaches.

Demonstrations
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

3039

https://youtu.be/395OHpuCILs
https://youtu.be/395OHpuCILs
https://github.com/jacamo-lang/jacamo/tree/master/doc/tutorials/tdd
https://github.com/jacamo-lang/jacamo/tree/master/doc/tutorials/tdd


REFERENCES
[1] Cleber Jorge Amaral and Jomi Fred Hübner. 2020. Jacamo-Web is on the Fly: An

Interactive Multi-Agent System IDE. In Engineering Multi-Agent Systems, Louise A.
Dennis, Rafael H. Bordini, and Yves Lespérance (Eds.). Springer International
Publishing, Cham, 246–255.

[2] Cleber Jorge Amaral, Timotheus Kampik, and Stephen Cranefield. 2020. A Frame-
work for Collaborative and Interactive Agent-oriented Developer Operations. In
Proceedings of the 19th International Conference on Autonomous Agents and Multi-
Agent Systems (Auckland, New Zealand) (AAMAS ’20). International Foundation
for Autonomous Agents and Multiagent Systems, Richland, SC, 3.

[3] Olivier Boissier, Rafael H Bordini, Jomi Hubner, and Alessandro Ricci. 2020. Multi-
agent oriented programming: programming multi-agent systems using JaCaMo. MIT
Press, Cambridge, Massachusetts, United States.

[4] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. 2007. Programming
Multi-Agent Systems in AgentSpeak Using Jason (Wiley Series in Agent Technology).
John Wiley & Sons, Inc., Hoboken, NJ, USA.

[5] Timotheus Kampik, Cleber Jorge Amaral, and Jomi Fred Hübner. 2022. Developer
Operations and Engineering Multi-agent Systems. In Engineering Multi-Agent
Systems, Natasha Alechina, Matteo Baldoni, and Brian Logan (Eds.). Springer
International Publishing, Cham, 175–186.

[6] Timotheus Kampik, Adnane Mansour, Olivier Boissier, Sabrina Kirrane, Julian
Padget, Terry R. Payne, Munindar P. Singh, Valentina Tamma, and Antoine Zim-
mermann. 2022. Governance of Autonomous Agents on the Web: Challenges and
Opportunities. ACM Trans. Internet Technol. 22, 4, Article 104 (nov 2022), 31 pages.
https://doi.org/10.1145/3507910

[7] Viviana Mascardi, Danny Weyns, Alessandro Ricci, Clara Benac Earle, Arthur
Casals, Moharram Challenger, Amit Chopra, Andrei Ciortea, Louise A. Dennis,
Álvaro Fernández Díaz, Amal El Fallah-Seghrouchni, Angelo Ferrando, Lars-Åke
Fredlund, Eleonora Giunchiglia, Zahia Guessoum, Akin Günay, Koen Hindriks,
Carlos A. Iglesias, Brian Logan, Timotheus Kampik, Geylani Kardas, Vincent J.
Koeman, John Bruntse Larsen, Simon Mayer, Tasio Méndez, Juan Carlos Nieves,
Valeria Seidita, Baris Tekin Teze, László Z. Varga, and Michael Winikoff. 2019.
Engineering Multi-Agent Systems: State of Affairs and the Road Ahead. SIGSOFT
Softw. Eng. Notes 44, 1 (March 2019), 18–28. https://doi.org/10.1145/3310013.
3322175

[8] Constantin-Valentin Pal, Florin Leon, Marcin Paprzycki, and Maria Ganzha. 2020.
A Review of Platforms for the Development of Agent Systems. arXiv:2007.08961
https://arxiv.org/abs/2007.08961

[9] Yoav Shoham. 1993. Agent-oriented programming. Artificial Intelligence 60, 1
(1993), 51 – 92. https://doi.org/10.1016/0004-3702(93)90034-9

Demonstrations
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

3040

https://doi.org/10.1145/3507910
https://doi.org/10.1145/3310013.3322175
https://doi.org/10.1145/3310013.3322175
https://arxiv.org/abs/2007.08961
https://arxiv.org/abs/2007.08961
https://doi.org/10.1016/0004-3702(93)90034-9

	Abstract
	1 Introduction
	2 Test-Driven Development for Agent-Oriented Programming
	3 Testing Capabilities of JaCaMo
	4 Conclusion
	References



