
Interaction-Oriented Programming: Intelligent, Meaning-Based
Multiagent Systems

Demonstration Track

Amit K. Chopra

Lancaster University

Lancaster, UK

amit.chopra@lancaster.ac.uk

Samuel H. Christie V

North Carolina State University

Raleigh, NC, USA

schrist@ncsu.edu

Munindar P. Singh

North Carolina State University

Raleigh, NC, USA

mpsingh@ncsu.edu

ABSTRACT
Interaction-Oriented Programming (IOP) is an approach for en-

gineering decentralized multiagent systems based in the idea of

modeling interaction meaning. Modeling meaning enables agents

to make flexible decentralized decisions. IOP addresses the key ar-

chitectural elements of multiagent systems, from communication

services for messaging to protocols and norms. In this demo, we

showcase the tools developed over the last decade that enable spec-

ifying, verifying, and implementing meaning-based, decentralized

multiagent systems.

CCS CONCEPTS
• Computing methodologies → Multi-agent systems; Dis-
tributed programming languages.

KEYWORDS
Decentralization, Programming Model, Norms, Protocols, Business

Processes

ACM Reference Format:
Amit K. Chopra, Samuel H. Christie V, andMunindar P. Singh. 2023. Interaction-

Oriented Programming: Intelligent, Meaning-Based Multiagent Systems:

Demonstration Track. In Proc. of the 22nd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 3 pages.

1 INTERACTION-ORIENTED PROGRAMMING
Our research program, titled Interaction-Oriented Programming
(IOP), concerns software abstractions for decentralized business
processes, that is, systems that support interactions between multi-

ple autonomous business principals. Autonomy refers to intelligent,

flexible decision making. IOP stems from a single question.

How can we represent autonomy in software for business

processes?

Current business process modeling technologies are typically

based either on workflows (a centrally executed program) or chore-

ographies (constraints on message ordering). Both rely on low-level

(typically control flow) abstractions that are divorced from business

meaning and are, therefore, incompatible with intelligent, decen-

tralized decision making.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

IOP unifies decentralized decision making with business process

enactment. IOP has a single solution concept at its heart.

Representing autonomy in software requires representing the

business meaning of communications.

E.g., in an ebusiness transaction between a buyer and a seller,

an Offer message specifying an item and a price means the corre-

sponding real-world offer (a domain object), which itself means a

real-world commitment (a higher-level domain object) from the

seller to the buyer for Delivery of the item if Payment of the price
occurs. The meaning of a CancelOffer is to rescind some Offer ; ad-
ditionally, it means a commitment from the seller to Refund the

buyer’s Payment if already made. When principals make decisions,

they do so based on such meaning.

Communication meaning has a rich history in AI, marred though

by early conceptual errors [8]. Our purpose with this demo is to

show that the promising approach of social meaning has come

of age; that it enables engineering business processes as loosely-

coupled, decentralized multiagent systems. We demonstrate soft-

ware for the following purposes.

2 DEMO: SPECIFYING BUSINESS CONTRACTS
We will demonstrate how a business processes may be specified in

terms of declarative norms, which may be understood as elements

of business contracts. We show how a traditional information store,

e.g., a relational database may understood in terms of norms, thus

supporting decision making [2, 3].

Listing 1: A commitment specification.
base events

quote (S , B , ID , i tem , p r i c e , t)
a c c ep t (S , B , ID , i tem , p r i c e , addr , t)
pay (S , B , ID , i tem , p r i c e , amt , t)
d e l i v e r (S , B , ID , addr , s t a t u s , t)
r e fund (S , B , ID , amt , rAmt , t)

commitment PurchaseCom S to B
create quote
detach (a c c ep t and pay) within quote + 5d

where amt >= p r i c e
discharge d e l i v e r within detached PurchaseCom + 10d

commitment Compensation S to B
create quote
detach v i o l a t e d PurchaseCom
discharge r e fund within v i o l a t e d PurchaseCom + 2d where rAmt >= amt

We demonstrate Cupid, a compiler that outputs SQL queries

given norm specifications such as the one in Listing 1. The specifi-

cation specifies the atomic business events (e.g., quote), each with

Demonstrations

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

3041

https://orcid.org/0000-0003-4629-7594
https://orcid.org/0000-0003-1341-0087
https://orcid.org/0000-0003-3599-3893

a key (the underlined attributes) for identifying its instances and

a distinguished attribute t for timestamping purposes. The atomic

events maps to relations in relational databases (the compiler in

fact generates ‘Create table. . . ’ statements.)

On top of the atomic events, commitments that capture business

relationships may be specified. Listing 1 shows two commitments

from S (seller) to B (buyer). PurchaseCom captures that S will make

timely deliveries to B upon timely payment; Compensation cap-

tures that Swill compensate B for violated instances of PurchaseCom.
The generated SQL queries enable principals to query databases

in terms of commitment events, e.g., discharge, violation, expiry,

and so on; in other words, in terms of key performance indicators
(KPI). The queries run into hundreds of lines, illustrating that as

simple and declarative as the commitments are, writing the relevant

SQL queries by hand—the only alternative today—would be highly

cumbersome and error-prone.

3 DEMO: BUSINESS CONTRACTS ON
BLOCKCHAIN

Smart contracts as representations for business contracts are a

nonstarter for several reasons, but two stand out. One, they can’t

actually guarantee outcomes; two, they are antiautonomy [11].

We demonstrate Hercule, software that interprets business con-

tracts based on norms over blockchains [6]. Inspired from Cupid,

Hercule enables laying out norms-based contracts on Hyperledger

Fabric [1] and tracking norm states on the blockchain. Hercule is

adapted to document-oriented databases, specifically CouchDB, the

underlying database of the Hyperledger Fabric blockchain.

Hercule demonstrates that you can deploy realistic business

contracts on blockchain. Hercule contracts, in contrast to smart

contracts, support flexible decision making, since they don’t update

the blockchain themselves, being just queries. Yet, they enable

tracking the states of the contracts, thereby supporting compliance

monitoring and accountability processes.

4 DEMO: SPECIFYING BUSINESS PROTOCOLS
Enacting a Cupid or Hercule business contract requires a declarative

business protocol that captures the relevant information causality

and integrity constraints. We will demonstrate how a business

contract may be enacted in a decentralized manner on the basis of

information protocols [9]. Listing 2 shows a protocol over which the

commitments in Listing 1 could be operationalized.

Listing 2: An information protocol.
Purchase {

r o l e B , S
parameter out ID , out item , out amt , out s t a t u s

S ↦→ B : quote [out ID , out item , out p r i c e]
B ↦→ S : a c c ep t [in ID , in item , in p r i c e , out addr]
B ↦→ S : pay [in ID , in item , in p r i c e , out amt]
S ↦→ B : d e l i v e r [in ID , in addr , out s t a t u s]
S ↦→ B : re fund [in ID , in amt , out rAmt , out s t a t u s]

}

Business protocols may be erroneously specified. For example,

they may be specified in such a way that the agents enacting the

protocols may make inconsistent decisions. Such protocols would

not be safe [10]. Alternatively, a protocol may be such that on

some branch, a decision required for termination can never be

made. Such protocols would not be live [10]. We demonstrate tools

for efficiently verifying the liveness and safety of protocols, in

addition to properties such as refinement (which captures whether

a protocol can substitute for another) [5] and atomicity (which

is the idea that composite protocols not have any unterminated

constituent protocols) [4].

A significant challenge for workflow-based business processes

is relating to the content of communications. We demonstrate how

our approach unifies coordination with content and in that supports

business meaning, including in terms of business contracts.

5 DEMO: DECISION-BASED PROGRAMMING
In a business process, each communication represents a principal’s

decision. We will show how to implement a principal’s software,

that is, its agent in accordance with its own decisionmaking policies

[7]. We will demonstrate flexibility in decision making that is not

possible with alternative technologies, e.g., workflow-based.

Specifically, we introduce a decision-oriented programmingmodel

in which one implements an agent by writing decision makers. The
idea is that in any state, an agent can make a set of decisions. A de-

cision maker picks some of those potential decisions, fleshes them

out with the missing information by applying some internal busi-

ness logic and communicates them via messages. Our programming

model guarantees compliance and supports automatic correlation

of decisions, multiprotocol decision making, and atomically making

composite decisions that consists of several decisions-as-messages,

among other things. Additionally, agents are fully asynchronous

and operate purely on the basis of information and meaning rather

than message ordering, as is commonplace in alternative software

implementations of business processes. This enables our agents

suitable to the IoT and they can be essentially be deployed as loosely-

coupled microservices.

6 RELATED SOFTWARE
Cupid is available at https://github.com/akchopr/Cupid/.

All the other software, along with the relevant documentation is

available at https://gitlab.com/masr/bspl/.

Attendees can pick the demos they are interested in.

ACKNOWLEDGMENTS
We thank the EPSRC (grant EP/N027965/1, Turtles) and the US

National Science Foundation (grant IIS-1908374) for partial support.

Demonstrations

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

3042

https://github.com/akchopr/Cupid/
https://gitlab.com/masr/bspl/

REFERENCES
[1] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh

Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukolic, Sharon Weed Cocco, and Jason Yellick. 2018.

Hyperledger Fabric: A distributed operating system for permissioned blockchains.

In Proceedings of the Thirteenth EuroSys Conference (Porto). ACM, 30:1–30:15.

[2] Amit K. Chopra and Munindar P. Singh. 2015. Cupid: Commitments in Relational

Algebra. In Proceedings of the 29th AAAI Conference on Artificial Intelligence.
Austin, Texas, 2052–2059.

[3] Amit K. Chopra and Munindar P. Singh. 2016. Custard: Computing Norm States

over Information Stores. In Proceedings of the 15th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). IFAAMAS, Singapore,

1096–1105.

[4] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2018. Com-

positional Correctness for Multiagent Interactions. In Proceedings of the 17th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
IFAAMAS, São Paolo, 1159–1167.

[5] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2020. Multia-

gent protocol refinement. In Proceedings of the 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). IFAAMAS, 258–266.

[6] Samuel H. Christie V, Amit K. Chopra, andMunindar P. Singh. 2021. Hercule: Rep-

resenting and Reasoning about Norms as a Foundation for Declarative Contracts

over Blockchain. , 67–75 pages. https://doi.org/10.1109/MIC.2021.3080982

[7] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2022. Mandrake:

Multiagent systems as a basis for programming fault-tolerant decentralized

applications. Autonomous Agents and Multi-Agent Systems 36, 16 (2022), 30.
[8] Munindar P. Singh. 1998. Agent Communication Languages: Rethinking the

Principles. IEEE Computer 31, 12 (Dec. 1998), 40–47.
[9] Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-

ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the 10th
International Conference on Autonomous Agents and MultiAgent Systems (Taipei).
IFAAMAS, 491–498.

[10] Munindar P. Singh. 2012. Semantics and Verification of Information-Based

Protocols. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). IFAAMAS, Valencia, Spain, 1149–1156.

[11] Munindar P. Singh and Amit K. Chopra. 2020. Computational Governance and

Violable Contracts for Blockchain Applications. IEEE Computer 53 (Jan. 2020),
53–62. Issue 1.

Demonstrations

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

3043

https://doi.org/10.1109/MIC.2021.3080982

	Abstract
	1 Interaction-Oriented Programming
	2 Demo: Specifying Business Contracts
	3 Demo: Business Contracts on Blockchain
	4 Demo: Specifying Business Protocols
	5 Demo: Decision-Based Programming
	6 Related Software
	References

